Symbol Graph Genetic Programming for Symbolic Regression

被引:0
|
作者
Song, Jinglu [1 ]
Lu, Qiang [1 ]
Tian, Bozhou [1 ]
Zhang, Jingwen [1 ]
Luo, Jake [2 ]
Wang, Zhiguang [1 ]
机构
[1] China Univ Petr, Beijing Key Lab Petr Data Min, Beijing, Peoples R China
[2] Univ Wisconsin, Dept Hlth Informat & Adm, Milwaukee, WI 53201 USA
关键词
Symbolic Regression; Semantics; Symbol Graph; Extreme Distribution; INFERENCE;
D O I
10.1007/978-3-031-70055-2_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper tackles the challenge of symbolic regression (SR) with a vast mathematical expression space, where the primary difficulty lies in accurately identifying subspaces that are more likely to contain the correct mathematical expressions. Establishing the NP-hard nature of the SR problem, this study introduces a novel approach named Symbol Graph Genetic Programming (SGGP) (Code is available at https://github.com/SymbolGraph/sggp). SGGP begins by constructing a symbol graph to represent the mathematical expression space effectively. It then employs the generalized Pareto distribution based on semantic similarity to assess the likelihood that each edge (subspace) in this graph will yield superior individuals. Guided by these probabilistic evaluations, SGGP strategically samples new individuals in its quest to discover accurate mathematical expressions. Comparative experiments conducted across three different benchmark types demonstrate that SGGP outperforms 21 existing baseline SR methods, achieving greater accuracy and conciseness in the mathematical expressions it generates.
引用
收藏
页码:221 / 237
页数:17
相关论文
共 50 条
  • [41] Transformation of CPS coordinates using symbolic regression and genetic programming
    Chou, HJ
    Wu, CH
    Su, WH
    Proceedings of the 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, 2005, : 301 - 306
  • [42] A Comparative Study on the Numerical Performance of Kaizen Programming and Genetic Programming for Symbolic Regression Problems
    Ferreira, Jimena
    Ines Torres, Ana
    Pedemonte, Martin
    2019 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2019, : 202 - 207
  • [43] GPTIPS: An Open Source Genetic Programming Toolbox For Multigene Symbolic Regression
    Searson, Dominic P.
    Leahy, David E.
    Willis, Mark J.
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS (IMECS 2010), VOLS I-III, 2010, : 77 - +
  • [44] LGP-VEC: A Vectorial Linear Genetic Programming for Symbolic Regression
    Gligorovski, Nikola
    Zhong, Jinghui
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 579 - 582
  • [45] Parsimony Measures in Multi-objective Genetic Programming for Symbolic Regression
    Burlacu, Bogdan
    Kronberger, Gabriel
    Kommenda, Michael
    Affenzeller, Michael
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 338 - 339
  • [46] BASELINE GENETIC PROGRAMMING: SYMBOLIC REGRESSION ON BENCHMARKS FOR SENSORY EVALUATION MODELING
    Noel, Pierre-Luc
    Veeramachaneni, Kalyan
    O'Reilly, Una-May
    GENETIC PROGRAMMING THEORY AND PRACTICE IX, 2011, : 173 - 194
  • [47] Parallel implementation of a genetic-programming based tool for symbolic regression
    Salhi, A
    Glaser, H
    De Roure, D
    INFORMATION PROCESSING LETTERS, 1998, 66 (06) : 299 - 307
  • [48] A Hybrid Grammar-based Genetic Programming for Symbolic Regression Problems
    Motta, Flavio A. A.
    de Freitas, Joao M.
    de Souza, Felipe R.
    Bernardino, Heder S.
    de Oliveira, Itamar L.
    Barbosa, Helio J. C.
    2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 2097 - 2104
  • [49] Genetic programming performance prediction and its application for symbolic regression problems
    Astarabadi, Samaneh Sadat Mousavi
    Ebadzadeh, Mohammad Mehdi
    INFORMATION SCIENCES, 2019, 502 : 418 - 433
  • [50] Adaptive Weighted Splines - A New Representation to Genetic Programming for Symbolic Regression
    Raymond, Christian
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2020, : 1003 - 1011