Symbol Graph Genetic Programming for Symbolic Regression

被引:0
|
作者
Song, Jinglu [1 ]
Lu, Qiang [1 ]
Tian, Bozhou [1 ]
Zhang, Jingwen [1 ]
Luo, Jake [2 ]
Wang, Zhiguang [1 ]
机构
[1] China Univ Petr, Beijing Key Lab Petr Data Min, Beijing, Peoples R China
[2] Univ Wisconsin, Dept Hlth Informat & Adm, Milwaukee, WI 53201 USA
关键词
Symbolic Regression; Semantics; Symbol Graph; Extreme Distribution; INFERENCE;
D O I
10.1007/978-3-031-70055-2_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper tackles the challenge of symbolic regression (SR) with a vast mathematical expression space, where the primary difficulty lies in accurately identifying subspaces that are more likely to contain the correct mathematical expressions. Establishing the NP-hard nature of the SR problem, this study introduces a novel approach named Symbol Graph Genetic Programming (SGGP) (Code is available at https://github.com/SymbolGraph/sggp). SGGP begins by constructing a symbol graph to represent the mathematical expression space effectively. It then employs the generalized Pareto distribution based on semantic similarity to assess the likelihood that each edge (subspace) in this graph will yield superior individuals. Guided by these probabilistic evaluations, SGGP strategically samples new individuals in its quest to discover accurate mathematical expressions. Comparative experiments conducted across three different benchmark types demonstrate that SGGP outperforms 21 existing baseline SR methods, achieving greater accuracy and conciseness in the mathematical expressions it generates.
引用
收藏
页码:221 / 237
页数:17
相关论文
共 50 条
  • [1] Sequential Symbolic Regression with Genetic Programming
    Oliveira, Luiz Otavio V. B.
    Otero, Fernando E. B.
    Pappa, Gisele L.
    Albinati, Julio
    GENETIC PROGRAMMING THEORY AND PRACTICE XII, 2015, : 73 - 90
  • [2] Compositional Genetic Programming for Symbolic Regression
    Krawiec, Krzysztof
    Kossinski, Dominik
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 570 - 573
  • [3] Symbolic regression via genetic programming
    Augusto, DA
    Barbosa, HJC
    SIXTH BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, VOL 1, PROCEEDINGS, 2000, : 173 - 178
  • [4] Statistical genetic programming for symbolic regression
    Haeri, Maryam Amir
    Ebadzadeh, Mohammad Mehdi
    Folino, Gianluigi
    APPLIED SOFT COMPUTING, 2017, 60 : 447 - 469
  • [5] The Inefficiency of Genetic Programming for Symbolic Regression
    Kronberger, Gabriel
    de Franca, Fabricio Olivetti
    Desmond, Harry
    Bartlett, Deaglan J.
    Kammerer, Lukas
    PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XVIII, PPSN 2024, PT I, 2024, 15148 : 273 - 289
  • [6] Taylor Genetic Programming for Symbolic Regression
    He, Baihe
    Lu, Qiang
    Yang, Qingyun
    Luo, Jake
    Wang, Zhiguang
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 946 - 954
  • [7] On improving genetic programming for symbolic regression
    Gustafson, S
    Burke, EK
    Krasnogor, N
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 912 - 919
  • [8] Lifetime Adaptation in Genetic Programming for the Symbolic Regression
    Merta, Jan
    Brandejsky, Tomas
    COMPUTATIONAL STATISTICS AND MATHEMATICAL MODELING METHODS IN INTELLIGENT SYSTEMS, VOL. 2, 2019, 1047 : 339 - 346
  • [9] Multifactorial Genetic Programming for Symbolic Regression Problems
    Zhong, Jinghui
    Feng, Liang
    Cai, Wentong
    Ong, Yew-Soon
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2020, 50 (11): : 4492 - 4505
  • [10] Genetic programming with separability detection for symbolic regression
    Wei-Li Liu
    Jiaquan Yang
    Jinghui Zhong
    Shibin Wang
    Complex & Intelligent Systems, 2021, 7 : 1185 - 1194