EFFICIENT INFERENCE FOR SPATIAL AND SPATIO-TEMPORAL STATISTICAL MODELS USING BASIS-FUNCTION AND DEEP-LEARNING METHODS

被引:0
|
作者
Sainsbury-Dale, Matthew [1 ]
机构
[1] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia
关键词
amortised inference; Bayes estimator; change-of-support; extreme-value model; hierarchical statistical model; inverse problem; likelihood-free inference; non-Gaussian data;
D O I
10.1017/S0004972724000716
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Inference in spatial and spatio-temporal models can be challenging for a variety of reasons. For example, non-Gaussianity often leads to analytically intractable integrals; we may be in a 'big' data setting, whereby the number of observations renders traditional methods too computationally expensive; we may wish to make inferences over spatial supports that are different to those of our measurements; or, we may wish to use a statistical model whose likelihood function is either unavailable or computationally intractable. In this thesis, I develop several techniques that help to alleviate these challenges.
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Spatio-temporal assessment of landscape ecological risk using spatial statistical analysis in a basin of Turkiye
    Senay, Diba
    Nurlu, Engin
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (10)
  • [42] Spatio-temporal deep learning models of 3D turbulence with physics informed diagnostics
    Mohan, Arvind T.
    Tretiak, Dima
    Chertkov, Misha
    Livescu, Daniel
    JOURNAL OF TURBULENCE, 2020, 21 (9-10): : 484 - 524
  • [43] DeepPaSTL: Spatio-Temporal Deep Learning Methods for Predicting Long-Term Pasture Terrains Using Synthetic Datasets
    Rangwala, Murtaza
    Liu, Jun
    Ahluwalia, Kulbir Singh
    Ghajar, Shayan
    Dhami, Harnaik Singh
    Tracy, Benjamin F.
    Tokekar, Pratap
    Williams, Ryan K.
    AGRONOMY-BASEL, 2021, 11 (11):
  • [44] Spatio-temporal wind speed prediction based on Clayton Copula function with deep learning fusion
    Huang, Yu
    Zhang, Bingzhe
    Pang, Huizhen
    Wang, Biao
    Lee, Kwang Y.
    Xie, Jiale
    Jin, Yupeng
    RENEWABLE ENERGY, 2022, 192 : 526 - 536
  • [45] Urban Traffic Prediction from Spatio-Temporal Data Using Deep Meta Learning
    Pan, Zheyi
    Liang, Yuxuan
    Wang, Weifeng
    Yu, Yong
    Zheng, Yu
    Zhang, Junbo
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 1720 - 1730
  • [46] Spatio-temporal dynamic navigation for electric vehicle charging using deep reinforcement learning
    Erust, Ali Can
    Tascikaraoglu, Fatma Yildiz
    IET INTELLIGENT TRANSPORT SYSTEMS, 2024, 18 (12) : 2520 - 2531
  • [47] Classifying eutrophication spatio-temporal dynamics in river systems using deep learning technique
    Lee, Dukyeong
    Moon, JunGi
    Jung, SangJin
    Suh, SungMin
    Pyo, JongCheol
    Science of the Total Environment, 2024, 954
  • [48] Spatio-Temporal Information for Action Recognition in Thermal Video Using Deep Learning Model
    Srihari, P.
    Harikiran, J.
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2022, 13 (08) : 669 - 680
  • [49] Rapid spatio-temporal flood prediction and uncertainty quantification using a deep learning method
    Hu, R.
    Fang, F.
    Pain, C. C.
    Navon, I. M.
    JOURNAL OF HYDROLOGY, 2019, 575 : 911 - 920
  • [50] Improvement of Typhoon Intensity Forecasting by Using a Novel Spatio-Temporal Deep Learning Model
    Jiang, Shuailong
    Fan, Hanjie
    Wang, Chunzai
    REMOTE SENSING, 2022, 14 (20)