EFFICIENT INFERENCE FOR SPATIAL AND SPATIO-TEMPORAL STATISTICAL MODELS USING BASIS-FUNCTION AND DEEP-LEARNING METHODS

被引:0
|
作者
Sainsbury-Dale, Matthew [1 ]
机构
[1] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia
关键词
amortised inference; Bayes estimator; change-of-support; extreme-value model; hierarchical statistical model; inverse problem; likelihood-free inference; non-Gaussian data;
D O I
10.1017/S0004972724000716
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Inference in spatial and spatio-temporal models can be challenging for a variety of reasons. For example, non-Gaussianity often leads to analytically intractable integrals; we may be in a 'big' data setting, whereby the number of observations renders traditional methods too computationally expensive; we may wish to make inferences over spatial supports that are different to those of our measurements; or, we may wish to use a statistical model whose likelihood function is either unavailable or computationally intractable. In this thesis, I develop several techniques that help to alleviate these challenges.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Modeling Temporal Dynamics with Function Approximation in Deep Spatio-Temporal Inference Network
    Karnowski, Thomas P.
    Arel, Itamar
    Young, Steven
    BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES 2011, 2011, 233 : 174 - +
  • [2] Efficient Hierarchical Bayesian Inference for Spatio-temporal Regression Models in Neuroimaging
    Hashemi, Ali
    Gao, Yijing
    Cai, Chang
    Ghosh, Sanjay
    Mueller, Klaus-Robert
    Nagarajan, Srikantan S.
    Haufe, Stefan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [3] Principles for statistical inference on big spatio-temporal data from climate models
    Castruccio, Stefano
    Genton, Marc G.
    STATISTICS & PROBABILITY LETTERS, 2018, 136 : 92 - 96
  • [4] Deep-Learning Based Power System Events Detection Technology Using Spatio-Temporal and Frequency Information
    Ma, Hongwei
    Lei, Xin
    Li, Zhen
    Yu, Shenglong
    Liu, Bin
    Dong, Xiaoliang
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2023, 13 (02) : 545 - 556
  • [5] Spatio-Temporal Abnormal Behavior Prediction in Elderly Persons Using Deep Learning Models
    Zerkouk, Meriem
    Chikhaoui, Belkacem
    SENSORS, 2020, 20 (08)
  • [6] Spatial and spatio-temporal statistical analyses of retinal images: a review of methods and applications
    Zhu, Wenyue
    Kolamunnage-Dona, Ruwanthi
    Zheng, Yalin
    Harding, Simon
    Czanner, Gabriela
    BMJ OPEN OPHTHALMOLOGY, 2020, 5 (01):
  • [7] FaST-GShare: Enabling Efficient Spatio-Temporal GPU Sharing in Serverless Computing for Deep Learning Inference
    Jianfeng Gu T
    Zhu, Yichao
    Wang, Puxuan
    Chadha, Mohak
    Gerndt, Michael
    PROCEEDINGS OF THE 52ND INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, ICPP 2023, 2023, : 635 - 644
  • [8] Effect of Spatio-Temporal Granularity on Demand Prediction for Deep Learning Models
    Varghese, Ken Koshy
    Mahdaviabbasabad, Sajjad
    Gentile, Guido
    Eldafrawi, Mohamed
    TRANSPORT AND TELECOMMUNICATION JOURNAL, 2023, 24 (01) : 22 - 32
  • [9] Air quality prediction using spatio-temporal deep learning
    Hu, Keyong
    Guo, Xiaolan
    Gong, Xueyao
    Wang, Xupeng
    Liang, Junqing
    Li, Daoquan
    ATMOSPHERIC POLLUTION RESEARCH, 2022, 13 (10)
  • [10] Spatio-Temporal Data Clustering using Deep Learning: A Review
    Aparna, R.
    Idicula, Sumam Mary
    2022 IEEE CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS (IEEE EAIS 2022), 2022,