Contrastive Self-Supervised Learning for Optical Music Recognition

被引:0
|
作者
Penarrubia, Carlos [1 ]
Valero-Mas, Jose J. [1 ]
Calvo-Zaragoza, Jorge [1 ]
机构
[1] Univ Alicante, Pattern Recognit & Artificial Intelligence Grp, San Vicente Del Raspeig, Spain
来源
关键词
Optical Music Recognition; Self-Supervised Learning; Contrastive Learning;
D O I
10.1007/978-3-031-70442-0_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optical Music Recognition (OMR) is the research area focused on transcribing images of musical scores. In recent years, this field has seen great development thanks to the emergence of Deep Learning. However, these types of solutions require large volumes of labeled data. To alleviate this problem, Contrastive Self-Supervised Learning (SSL) has emerged as a paradigm that leverages large amounts of unlabeled data to train neural networks, yielding meaningful and robust representations. In this work, we explore its first application to the field of OMR. By utilizing three datasets that represent the heterogeneity of musical scores in notations and graphic styles, and through multiple evaluation protocols, we demonstrate that contrastive SSL delivers promising results, significantly reducing data scarcity challenges in OMR. To the best of our knowledge, this is the first study that integrates these two fields. We hope this research serves as a baseline and stimulates further exploration.
引用
收藏
页码:312 / 326
页数:15
相关论文
共 50 条
  • [41] Memory Bank Clustering for Self-supervised Contrastive Learning
    Hao, Yiqing
    An, Gaoyun
    Ruan, Qiuqi
    IMAGE AND GRAPHICS TECHNOLOGIES AND APPLICATIONS, IGTA 2021, 2021, 1480 : 132 - 144
  • [42] Contrastive Self-supervised Learning in Recommender Systems: A Survey
    Jing, Mengyuan
    Zhu, Yanmin
    Zang, Tianzi
    Wang, Ke
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (02)
  • [43] Self-supervised contrastive representation learning for semantic segmentation
    Liu B.
    Cai H.
    Wang Y.
    Chen X.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2024, 51 (01): : 125 - 134
  • [44] CONTRASTIVE SEPARATIVE CODING FOR SELF-SUPERVISED REPRESENTATION LEARNING
    Wang, Jun
    Lam, Max W. Y.
    Su, Dan
    Yu, Dong
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3865 - 3869
  • [45] Interactive Contrastive Learning for Self-Supervised Entity Alignment
    Zeng, Kaisheng
    Dong, Zhenhao
    Hou, Lei
    Cao, Yixin
    Hu, Minghao
    Yu, Jifan
    Lv, Xin
    Cao, Lei
    Wang, Xin
    Liu, Haozhuang
    Huang, Yi
    Feng, Junlan
    Wan, Jing
    Li, Juanzi
    Feng, Ling
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 2465 - 2475
  • [46] Grouped Contrastive Learning of Self-Supervised Sentence Representation
    Wang, Qian
    Zhang, Weiqi
    Lei, Tianyi
    Peng, Dezhong
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [47] Contrastive self-supervised learning for neurodegenerative disorder classification
    Gryshchuk, Vadym
    Singh, Devesh
    Teipel, Stefan
    Dyrba, Martin
    ADNI Study Grp
    AIBL Study Grp
    FTLDNI Study Grp
    FRONTIERS IN NEUROINFORMATICS, 2025, 19
  • [48] Bayesian Contrastive Learning with Manifold Regularization for Self-Supervised Skeleton Based Action Recognition
    Lin, Lilang
    Zhang, Jiahang
    Liu, Jiaying
    2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 2023,
  • [49] Self-supervised group meiosis contrastive learning for EEG-based emotion recognition
    Haoning Kan
    Jiale Yu
    Jiajin Huang
    Zihe Liu
    Heqian Wang
    Haiyan Zhou
    Applied Intelligence, 2023, 53 : 27207 - 27225
  • [50] Self-Supervised Contrastive Learning on Cross-Augmented Samples for SAR Target Recognition
    Liu, Xiaoyu
    Wang, Chenwei
    Pei, Jifang
    Huo, Weibo
    Zhang, Yin
    Huang, Yulin
    Sun, Zhichao
    2023 IEEE RADAR CONFERENCE, RADARCONF23, 2023,