Social recommendation system based on heterogeneous graph attention networks

被引:0
|
作者
El Alaoui, Driss [1 ]
Riffi, Jamal [1 ]
Sabri, Abdelouahed [1 ]
Aghoutane, Badraddine [2 ]
Yahyaouy, Ali [1 ]
Tairi, Hamid [1 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Fac Sci Dhar El Mahraz, Dept Informat, LISAC Lab, 1796 Fez Atlas, Fes 30000, Fes Meknes, Morocco
[2] Moulay Ismail Univ, Fac Sci Meknes, Comp Sci & Applicat Lab, 11201 Zitoune Meknes, Meknes 50000, Fes Meknes, Morocco
关键词
Graph neural networks; Heterogeneous graph; Social recommendation;
D O I
10.1007/s41060-024-00698-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Heterogeneous graph attention networks are becoming a popular choice, particularly in areas like social recommendation systems, surpassing conventional graph attention networks. Our research highlights their adaptability to the complexity of relationships among different types of nodes, effectively addressing the 'cold start' challenge by leveraging a variety of information. This paper introduces an innovative social recommendation system based on deep heterogeneous graph attention networks to produce embeddings that represent users and items from different perspectives. By incorporating contextual information and user behavior patterns, our approach enhances prediction accuracy. Additionally, we employ a multiclass classification method to predict user ratings for unrated items, providing a comprehensive recommendation solution. Experimental results, evaluated on three benchmark datasets, show substantial improvements, with HR@k increasing by 23.55-44.68% and NDCG@k rising by 21.64-27%. These enhancements reflect significant gains in accuracy, relevance, and ranking performance compared to baseline models. Thus, heterogeneous graph attention networks emerge as a preferred approach to enhance the performance of social recommendation systems, offering a holistic solution to address diverse challenges in recommendation scenarios.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] A Method of Detecting Bot Networks Based on Graph Clustering in the Recommendation System of Social Network
    Meleshko, Yelyzaveta
    Yakymenko, Mykola
    Semenov, Serhii
    COLINS 2021: COMPUTATIONAL LINGUISTICS AND INTELLIGENT SYSTEMS, VOL I, 2021, 2870
  • [32] Heterogeneous Multi-Behavior Recommendation Based on Graph Convolutional Networks
    Rang, Ran
    Xing, Linlin
    Zhang, Longbo
    Cai, Hongzhen
    Sun, Zhaojie
    IEEE ACCESS, 2023, 11 : 22574 - 22584
  • [33] Recommendation system based on improved graph neural networks
    Chen, Jiawen
    Cai, Chao
    Cai, Yong
    Yan, Fangbin
    Li, Jiayi
    International Journal of Wireless and Mobile Computing, 2024, 27 (03) : 290 - 296
  • [34] Graph Neural Networks for Social Recommendation
    Fan, Wenqi
    Ma, Yao
    Li, Qing
    He, Yuan
    Zhao, Eric
    Tang, Jiliang
    Yin, Dawei
    WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, : 417 - 426
  • [35] A survey of graph neural network based recommendation in social networks
    Li, Xiao
    Sun, Li
    Ling, Mengjie
    Peng, Yan
    NEUROCOMPUTING, 2023, 549
  • [36] Similarity-Based Heterogeneous Graph Attention Network for Knowledge-Enhanced Recommendation
    Zhang, Fan
    Li, Rui
    Xu, Ke
    Xu, Hongguang
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2021, PT II, 2021, 12816 : 488 - 499
  • [37] Transfer Learning with Graph Attention Networks for Team Recommendation
    Kaw, Sagar
    Kobti, Ziad
    Selvarajah, Kalyani
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [38] Optimal Recommendation Models Based on Knowledge Representation Learning and Graph Attention Networks
    He, Qing
    Liu, Songyan
    Liu, Yao
    IEEE ACCESS, 2023, 11 : 19809 - 19818
  • [39] Learning Resource Recommendation Model Based on Collaborative Knowledge Graph Attention Networks
    Wang, Chong
    Yue, Peipei
    IEEE ACCESS, 2024, 12 : 153232 - 153242
  • [40] Personal Interest Attention Graph Neural Networks for Session-Based Recommendation
    Zhang, Xiangde
    Zhou, Yuan
    Wang, Jianping
    Lu, Xiaojun
    ENTROPY, 2021, 23 (11)