Holomorphic Foliations of Degree Four on the Complex Projective Space

被引:0
|
作者
Fernandez-Perez, Arturo [1 ]
Bernardes, Vangellis Oliveira Sagnori [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Math, Ave Antonio Carlos 6627, BR-31270901 Belo Horizonte, Brazil
来源
关键词
Holomorphic foliations; Rational first integral; Transversely affine structure; Transversely projective structure; Pull-back of foliations; Godbillon-Vey sequences; SINGULAR FOLIATIONS; CURVES;
D O I
10.1007/s00574-025-00444-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study holomorphic foliations of degree four on complex projective space Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {P}<^>n$$\end{document}, where n >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document}, with a special focus on obtaining a structural theorem for these foliations. Furthermore, for a foliation F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} of degree d >= 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 4$$\end{document} with a sufficiently high kth-jet, we prove that either F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} is transversely affine outside a compact hypersurface, or F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} is transversely projective outside a compact hypersurface, or F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} is the pull-back of a foliation on P2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {P}<^>2$$\end{document} by a rational map.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Topological Moduli Space for Germs of Holomorphic Foliations
    Marin, David
    Mattei, Jean-Francois
    Salem, Eliane
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (23) : 9228 - 9292
  • [32] Codimension one foliations of degree three on projective spaces
    da Costa, Raphael Constant
    Lizarbe, Ruben
    Pereira, Jorge Vitorio
    BULLETIN DES SCIENCES MATHEMATIQUES, 2022, 174
  • [33] Local classification of holomorphic foliations on complex surfaces
    Thom, Olivier
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2016, 47 (04): : 989 - 1005
  • [34] A projective description of the space of holomorphic germs
    Laubin, P
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2001, 44 : 407 - 416
  • [35] NORMAL FAMILIES OF HOLOMORPHIC MAPPINGS INTO COMPLEX PROJECTIVE SPACE CONCERNING SHARED HYPERPLANES
    Yang, Liu
    Fang, Caiyun
    Pang, Xuecheng
    PACIFIC JOURNAL OF MATHEMATICS, 2014, 272 (01) : 245 - 256
  • [36] Geometry of certain foliations on the complex projective plane
    Bedrouni, Samir
    Marin, David
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2024, 25 (01) : 611 - 648
  • [37] MINIMAL SETS OF FOLIATIONS ON COMPLEX PROJECTIVE SPACES
    CAMACHO, C
    NETO, AL
    SAD, P
    PUBLICATIONS MATHEMATIQUES, 1988, (68): : 187 - 203
  • [38] ON THE HOLOMORPHIC LENGTH OF A COMPLEX PROJECTIVE VARIETY
    ALZATI, A
    PIROLA, GP
    ARCHIV DER MATHEMATIK, 1992, 59 (04) : 398 - 402
  • [39] Meromorphic singular foliations on complex projective surfaces
    Ballico, E
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1996, 14 (03) : 257 - 261
  • [40] Algebraicity of foliations on complex projective manifolds, applications
    Campana, Frederic
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (04): : 1187 - 1208