CAT(0) cube complexes and asymptotically rigid mapping class groups

被引:0
|
作者
Abadie, Marie [1 ]
机构
[1] Univ Luxembourg, Dept Math, Luxembourg, Luxembourg
关键词
THOMPSON GROUP;
D O I
10.1515/jgth-2024-0075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present paper contributes to the study of asymptotically rigid mapping class groups of infinitely punctured surfaces obtained by thickening planar trees. In a paper from 2022, Genevois, Lonjou and Urech study the latter groups using cube complexes. We determine in which cases their cube complexes are CAT(0) From this study, we develop a family of CAT(0) cubes complexes on which the asymptotically rigid mapping class groups act.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Resolutions of CAT(0) cube complexes and accessibility properties
    Beeker, Benjamin
    Lazarovich, Nir
    Algebraic and Geometric Topology, 2016, 16 (04): : 2045 - 2065
  • [32] Coning-off CAT(0) cube complexes
    Genevois, Anthony
    ANNALES DE L INSTITUT FOURIER, 2021, 71 (03) : 1535 - 1599
  • [33] Asymptotically rigid mapping class groups I: Finiteness properties of braided Thompson's and Houghton's groups
    Genevois, Anthony
    Lonjou, Anne
    Urech, Christian
    GEOMETRY & TOPOLOGY, 2022, 26 (03) : 1385 - 1434
  • [34] A note on torsion subgroups of groups acting on finite-dimensional CAT(0) cube complexes
    Genevois, Anthony
    DISCRETE MATHEMATICS, 2020, 343 (06)
  • [35] Proper actions of Grigorchuk groups on a CAT(0) cube complex
    Schneeberger, Gregoire
    GEOMETRIAE DEDICATA, 2024, 218 (06)
  • [36] The Furstenberg-Poisson boundary and CAT(0) cube complexes
    Fernos, Talia
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2018, 38 : 2180 - 2223
  • [37] Isometries of CAT(0) cube complexes are semi-simple
    Haglund, Frederic
    ANNALES MATHEMATIQUES DU QUEBEC, 2023, 47 (02): : 249 - 261
  • [38] Folding-like techniques for CAT(0) cube complexes
    Ben-zvi, Michael
    Kropholler, Robert
    Lyman, Rylee Alanza
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2022, 173 (01) : 227 - 238
  • [39] Globally stable cylinders for hyperbolic CAT(0) cube complexes
    Lazarovich, Nir
    Sageev, Michah
    GROUPS GEOMETRY AND DYNAMICS, 2024, 18 (01) : 203 - 211
  • [40] CAT(0) cube complexes are determined by their boundary cross ratio
    Beyrer, Jonas
    Fioravanti, Elia
    Incerti-Medici, Merlin
    GROUPS GEOMETRY AND DYNAMICS, 2021, 15 (01) : 313 - 333