A BOUNDARY VALUE PROBLEM WITH IMPULSIVE EFFECTS AND RIEMANN-LIOUVILLE TEMPERED FRACTIONAL DERIVATIVES

被引:1
|
作者
Gutierrez, Hernan A. Cuti [1 ]
Nyamoradi, Nemat [2 ]
Ledesma, Cesar E. Torres [1 ]
机构
[1] Univ Nacl Trujillo, Inst Invest Matemat, FCA Res Grp, FCFYM,Dept Matemat, Ave Juan Pablo II S-N, Trujillo 13006, Peru
[2] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
来源
关键词
Riemann-Liouville and Caputo tempered fractional derivatives; impulsive effects; tempered fractional space of Sobolev type; variational meth- ods; HAMILTONIAN-SYSTEMS; EXISTENCE;
D O I
10.11948/20240068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a fractional impulsive differential equation with mixed tempered fractional derivatives. We justify some fundamental properties in the variational structure to fractional impulsive differential equations with the tempered fractional derivative operator. Finally, we study the existence of weak solutions with critical point theory and variational methods for the proposed problem. To prove the effectiveness of our main result, we investigate an interesting example.
引用
收藏
页码:3496 / 3519
页数:24
相关论文
共 50 条
  • [31] Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives
    Zhang Shuqin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) : 2087 - 2093
  • [32] Positive Solutions for a High-Order Riemann-Liouville Type Fractional Integral Boundary Value Problem Involving Fractional Derivatives
    Wang, Wuyang
    Ye, Jun
    Xu, Jiafa
    O'Regan, Donal
    SYMMETRY-BASEL, 2022, 14 (11):
  • [33] Solvability of BVPs for impulsive fractional differential equations involving the Riemann-Liouville fractional derivatives
    Liu, Yuji
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2018, 63 (01): : 79 - 108
  • [34] Approximate controllability of impulsive fractional neutral evolution equations with Riemann-Liouville fractional derivatives
    Liu, Xianghu
    Liu, Zhenhai
    Bin, Maojun
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 17 (03) : 468 - 485
  • [35] Boundary value problem for a degenerate equation with a Riemann-Liouville operator
    Irgashev, Bakhrom Yu.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2023, 14 (05): : 511 - 517
  • [36] RIEMANN-STIELTJES INTEGRAL BOUNDARY VALUE PROBLEMS INVOLVING MIXED RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DERIVATIVES
    Ahmad, Bashir
    Alruwaily, Ymnah
    Alsaedi, Ahmed
    Ntouyas, Sotiris K.
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2021,
  • [37] Riemann-stieltjes integral boundary value problems involving mixed riemann-liouville and caputo fractional derivatives
    Ahmad B.
    Alruwaily Y.
    Alsaedi A.
    Ntouyas S.K.
    Journal of Nonlinear Functional Analysis, 2021, 2021 (01):
  • [38] On coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives
    Wang, Xiaoming
    Alam, Mehboob
    Zada, Akbar
    AIMS MATHEMATICS, 2021, 6 (02): : 1561 - 1595
  • [39] Impulsive Multiorders Riemann-Liouville Fractional Differential Equations
    Yukunthorn, Weera
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015
  • [40] Positive Solutions for a System of Nonlinear Semipositone Boundary Value Problems with Riemann-Liouville Fractional Derivatives
    Qiu, Xiaowei
    Xu, Jiafa
    O'Regan, Donal
    Cui, Yujun
    JOURNAL OF FUNCTION SPACES, 2018, 2018