Development and Validation of a Deep Learning System to Differentiate HER2-Zero, HER2-Low, and HER2-Positive Breast Cancer Based on Dynamic Contrast-Enhanced MRI

被引:1
|
作者
Dai, Yi [1 ]
Lian, Chun [1 ]
Zhang, Zhuo [2 ]
Gao, Jing [3 ,4 ,5 ]
Lin, Fan [3 ,4 ,5 ]
Li, Ziyin [3 ,4 ,5 ]
Wang, Qi [4 ,5 ]
Chu, Tongpeng [4 ,5 ]
Aishanjiang, Dilinuer [1 ]
Chen, Meiying [1 ]
Wang, Ximing [6 ]
Cheng, Guanxun [1 ]
Huang, Rong [1 ]
Dong, Jianjun [3 ]
Zhang, Haicheng [4 ,5 ]
Mao, Ning [3 ,4 ,5 ]
机构
[1] Peking Univ, Shenzhen Hosp, Dept Med Imaging, Shenzhen, Guangdong, Peoples R China
[2] Shandong Technol & Business Univ, Sch Informat & Elect Engn, Yantai, Shandong, Peoples R China
[3] Qingdao Univ, Yantai Yuhuangding Hosp, Dept Radiol, 20 Yuhuangding East St, Yantai 264000, Shandong, Peoples R China
[4] Qingdao Univ, Yantai Yuhuangding Hosp, Big Data & Artificial Intelligence Lab, 20 Yuhuangding East St, Yantai 264000, Shandong, Peoples R China
[5] Qingdao Univ, Yantai Yuhuangding Hosp, Shandong Prov Key Med & Hlth Lab Intelligent Diag, 20 Yuhuangding East St, Yantai 264000, Shandong, Peoples R China
[6] Shandong Prov Hosp, Dept Radiol, Jinan, Shandong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
dynamic contrast-enhanced MRI; deep learning; breast cancer; human epidermal growth factor receptor 2;
D O I
10.1002/jmri.29670
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Previous studies explored MRI-based radiomic features for differentiating between human epidermal growth factor receptor 2 (HER2)-zero, HER2-low, and HER2-positive breast cancer, but deep learning's effectiveness is uncertain. Purpose: This study aims to develop and validate a deep learning system using dynamic contrast-enhanced MRI (DCE-MRI) for automated tumor segmentation and classification of HER2-zero, HER2-low, and HER2-positive statuses. Study Type: Retrospective. Population: One thousand two hundred ninety-four breast cancer patients from three centers who underwent DCE-MRI before surgery were included in the study (52 +/- 11 years, 811/204/279 for training/internal testing/external testing). Field Strength/Sequence3 T scanners, using T1-weighted 3D fast spoiled gradient-echo sequence, T1-weighted 3D enhanced fast gradient-echo sequence and T1-weighted turbo field echo sequence. Assessment: An automated model segmented tumors utilizing DCE-MRI data, followed by a deep learning models (ResNetGN) trained to classify HER2 statuses. Three models were developed to distinguish HER2-zero, HER2-low, and HER2-positive from their respective non-HER2 categories. Statistical Tests: Dice similarity coefficient (DSC) was used to evaluate the segmentation performance of the model. Evaluation of the model performances for HER2 statuses involved receiver operating characteristic (ROC) curve analysis and the area under the curve (AUC), accuracy, sensitivity, and specificity. The P-values <0.05 were considered statistically significant. Results: The automatic segmentation network achieved DSC values of 0.85 to 0.90 compared to the manual segmentation across different sets. The deep learning models using ResNetGN achieved AUCs of 0.782, 0.776, and 0.768 in differentiating HER2-zero from others in the training, internal test, and external test sets, respectively. Similarly, AUCs of 0.820, 0.813, and 0.787 were achieved for HER2-low vs. others, and 0.792, 0.745, and 0.781 for HER2-positive vs. others, respectively. Data Conclusion: The proposed DCE-MRI-based deep learning system may have the potential to preoperatively distinct HER2 expressions of breast cancers with therapeutic implications.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] HER2-low vs HER2-zero metastatic breast carcinoma: A clinical and genomic descriptive analysis
    Sanchez Bayona, R.
    Luna, A. M.
    Tolosa, P.
    Sanchez De Torre, A.
    Castelo, A.
    Marin, M.
    Garcia, C.
    Boni, V.
    Bernal Hertfelder, E.
    Vega, E.
    Rojas, B.
    Bratos, R.
    Martinez, M.
    Diaz Bermejo, A. J.
    Lema, L.
    Manso, L.
    Ciruelos, E. M.
    ANNALS OF ONCOLOGY, 2021, 32 : S29 - S30
  • [22] Prevalence of HER2-low and HER2-zero subgroups and correlation with response to neoadjuvant chemotherapy (NACT) in patients with HER2-negative breast cancer
    Reinert, Tomas
    Sartori, Guilherme Parisotto
    Souza, Alessandra A. B.
    Pellegrini, Rodrigo
    Rosa, Mahira L.
    Rossatto, Nathalia
    Coelho, Guilherme P.
    Litvin, Isnard E.
    Zerwes, Felipe
    Millen, Eduardo
    Cavalcante, Francisco P.
    Frasson, Antonio L.
    Graudenz, Marcia S.
    Barrios, Carlos H.
    CANCER RESEARCH, 2021, 81 (04)
  • [23] Pathologic complete response and survival in HER2-low and HER2-zero early breast cancer treated with neoadjuvant chemotherapy
    Ilie, Silvia Mihaela
    Briot, Nathalie
    Constantin, Guillaume
    Roussot, Nicolas
    Ilie, Alis
    Bergeron, Anthony
    Arnould, Laurent
    Beltjens, Francoise
    Desmoulin, Isabelle
    Mayeur, Didier
    Kaderbhai, Coureche
    Hennequin, Audrey
    Jankowski, Clementine
    Padeano, Marie Martine
    Costaz, Helene
    Amet, Alix
    Coutant, Charles
    Coudert, Bruno
    Bertaut, Aurelie
    Ladoire, Sylvain
    BREAST CANCER, 2023, 30 (06) : 997 - 1007
  • [24] Pathologic complete response and survival in HER2-low and HER2-zero early breast cancer treated with neoadjuvant chemotherapy
    Silvia Mihaela Ilie
    Nathalie Briot
    Guillaume Constantin
    Nicolas Roussot
    Alis Ilie
    Anthony Bergeron
    Laurent Arnould
    Françoise Beltjens
    Isabelle Desmoulin
    Didier Mayeur
    Courèche Kaderbhai
    Audrey Hennequin
    Clémentine Jankowski
    Marie Martine Padeano
    Helène Costaz
    Alix Amet
    Charles Coutant
    Bruno Coudert
    Aurélie Bertaut
    Sylvain Ladoire
    Breast Cancer, 2023, 30 : 997 - 1007
  • [25] Long-term prognostic significance of HER2-low and HER2-zero in node-negative breast cancer
    Almstedt, Katrin
    Heimes, Anne-Sophie
    Kappenberg, Franziska
    Battista, Marco J.
    Lehr, Hans-Anton
    Krajnak, Slavomir
    Lebrecht, Antje
    Gehrmann, Mathias
    Stewen, Kathrin
    Brenner, Walburgis
    Weikel, Wolfgang
    Rahnenfuehrer, Joerg
    Hengstler, Jan G.
    Hasenburg, Annette
    Schmidt, Marcus
    EUROPEAN JOURNAL OF CANCER, 2022, 173 : 10 - 19
  • [26] Racial disparity in the clinical outcomes of HER2-low and HER2-zero early-stage breast cancer.
    Gandhi, Shipra
    Catalfamo, Kayla
    Attwood, Kristopher
    Kapoor, Ankita
    Jatwani, Karan
    Roy, Arya Mariam
    JOURNAL OF CLINICAL ONCOLOGY, 2023, 41 (16)
  • [27] Efficacy and prognosis of HER2-Low and HER2-Zero in triple-negative breast cancer after neoadjuvant chemotherapy
    Shi, Zhendong
    Liu, Yingxue
    Fang, Xuan
    Liu, Xu
    Meng, Jie
    Zhang, Jin
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [28] The DEBBRAH trial: Trastuzumab deruxtecan in HER2-positive and HER2-low breast cancer patients with carcinomatosis
    Batista, Marta Vaz
    Perez-Garcia, Jose Manuel
    Garrigos, Laia
    Garcia-Saenz, Jose Angel
    Cortez, Patricia
    Racca, Fabricio
    Blanch, Salvador
    Ruiz-Borrego, Manuel
    Fernandez-Ortega, Adela
    Fernandez Abad, Maria
    Iranzo, Vega
    Gion, Maria
    Martrat, Griselda
    Alcala-Lopez, Daniel
    Perez-Escuredo, Jhudit
    Sampayo-Cordero, Miguel
    Llombart-Cussac, Antonio
    Braga, Sofia
    Cortes, Javier
    MED, 2025, 6 (01):
  • [29] Event-free survival in HER2-low vs HER2-zero breast cancer patients submitted to neoadjuvant chemotherapy
    Sartori, Guilherme
    Ramalho, Susana
    da Silva, Leonardo Roberto
    Reinert, Tomas
    Da Rosa, Mahira Lopes
    Tavares, Grazielle Morais
    Vasconcelos, Vivian
    Mantovani, Higor
    Cabello, Ana Elisa Ribeiro Da Silva
    Coelho, Guilherme
    Mandelli, Jovana
    Zaffaroni, Facundo
    Cabello, Cesar
    Barrios, Carlos
    Graudenz, Marcia Silveira
    CANCER RESEARCH, 2024, 84 (09)
  • [30] Survival outcomes in HER2-low versus HER2-zero breast cancer after neoadjuvant chemotherapy: a meta-analysis
    Xia, Lin-Yu
    Cao, Xu-Chen
    Yu, Yue
    WORLD JOURNAL OF SURGICAL ONCOLOGY, 2024, 22 (01)