Machine learning-based radiomics in neurodegenerative and cerebrovascular disease

被引:0
|
作者
Shi, Ming-Ge [1 ]
Feng, Xin-Meng [2 ]
Zhi, Hao-Yang [3 ]
Hou, Lei [1 ]
Feng, Dong-Fu [1 ]
机构
[1] Shanghai Jiao Tong Univ Affiliated Peoples Hosp 6, Dept Neurosurg, South Campus, Shanghai 201400, Peoples R China
[2] Chongqing Med Univ, Int Med Coll, Chongqing, Peoples R China
[3] Anhui Univ Sci & Technol, Sch Med, Huainan, Peoples R China
来源
MEDCOMM | 2024年 / 5卷 / 11期
关键词
machine learning; neuroimaging; poststroke cognitive impairment; radiomics; stroke; POSTSTROKE COGNITIVE IMPAIRMENT; ARTIFICIAL-INTELLIGENCE; STROKE; MRI; CLASSIFICATION; SEGMENTATION; DIAGNOSIS; PATIENT;
D O I
10.1002/mco2.778
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Cognitive impairments, which can be caused by neurodegenerative and cerebrovascular disease, represent a growing global health crisis with far-reaching implications for individuals, families, healthcare systems, and economies worldwide. Notably, neurodegenerative-induced cognitive impairment often presents a different pattern and severity compared to cerebrovascular-induced cognitive impairment. With the development of computational technology, machine learning techniques have developed rapidly, which offers a powerful tool in radiomic analysis, allowing a more comprehensive model that can handle high-dimensional, multivariate data compared to the traditional approach. Such models allow the prediction of the disease development, as well as accurately classify disease from overlapping symptoms, therefore facilitating clinical decision making. This review will focus on the application of machine learning-based radiomics on cognitive impairment caused by neurogenerative and cerebrovascular disease. Within the neurodegenerative category, this review primarily focuses on Alzheimer's disease, while also covering other conditions such as Parkinson's disease, Lewy body dementia, and Huntington's disease. In the cerebrovascular category, we concentrate on poststroke cognitive impairment, including ischemic and hemorrhagic stroke, with additional attention given to small vessel disease and moyamoya disease. We also review the specific challenges and limitations when applying machine learning radiomics, and provide our suggestion to overcome those limitations towards the end, and discuss what could be done for future clinical use.
引用
收藏
页数:32
相关论文
共 50 条
  • [41] Machine learning-based Radiomics analysis for differentiation degree and lymphatic node metastasis of extrahepatic cholangiocarcinoma
    Yong Tang
    Chun Mei Yang
    Song Su
    Wei Jia Wang
    Li Ping Fan
    Jian Shu
    BMC Cancer, 21
  • [42] A machine learning-based prediction of the micropapillary/solid growth pattern in invasive lung adenocarcinoma with radiomics
    He, Bingxi
    Song, Yongxiang
    Wang, Lili
    Wang, Tingting
    She, Yunlang
    Hou, Likun
    Zhang, Lei
    Wu, Chunyan
    Babu, Benson A.
    Bagci, Ulas
    Waseem, Tayab
    Yang, Minglei
    Xie, Dong
    Chen, Chang
    TRANSLATIONAL LUNG CANCER RESEARCH, 2021, 10 (02) : 955 - +
  • [43] Machine Learning-Based Radiomics Predicting Tumor Grades and Expression of Multiple Pathologic Biomarkers in Gliomas
    Gao, Min
    Huang, Siying
    Pan, Xuequn
    Liao, Xuan
    Yang, Ru
    Liu, Jun
    FRONTIERS IN ONCOLOGY, 2020, 10
  • [44] Predicting the risk stratification of gastrointestinal stromal tumors using machine learning-based ultrasound radiomics
    Zhuo, Minling
    Tang, Yi
    Guo, Jingjing
    Qian, Qingfu
    Xue, Ensheng
    Chen, Zhikui
    JOURNAL OF MEDICAL ULTRASONICS, 2024, 51 (01) : 71 - 82
  • [45] Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases
    Taghavi, Marjaneh
    Trebeschi, Stefano
    Simoes, Rita
    Meek, David B.
    Beckers, Rianne C. J.
    Lambregts, Doenja M. J.
    Verhoef, Cornelis
    Houwers, Janneke B.
    van der Heide, Uulke A.
    Beets-Tan, Regina G. H.
    Maas, Monique
    ABDOMINAL RADIOLOGY, 2021, 46 (01) : 249 - 256
  • [46] Machine learning-based radiomics nomograms to predict number of fields in postoperative IMRT for breast cancer
    Mao, Yichen
    Di, Wenyi
    Zong, Dan
    Mu, Zhongde
    He, Xia
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2024, 25 (03):
  • [47] Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics
    Bing Mao
    Jingdong Ma
    Shaobo Duan
    Yuwei Xia
    Yaru Tao
    Lianzhong Zhang
    European Radiology, 2021, 31 : 4576 - 4586
  • [48] Machine learning-based bpMRI radiomics for differentiation of prostate cancer in PSA gray zone cases
    Liu, Weiwei
    Yuan, Rong
    MEDICAL IMAGING 2023, 2023, 12469
  • [49] Predicting regional tau accumulation with machine learning-based tau-PET and advanced radiomics
    Rathore, Saima
    Higgins, Ixavier A.
    Wang, Jian
    Kennedy, Ian A.
    Iaccarino, Leonardo
    Burnham, Samantha C.
    Pontecorvo, Michael J.
    Shcherbinin, Sergey
    ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS, 2024, 10 (04)
  • [50] Machine learning-based radiomics analysis of preoperative functional liver reserve with MRI and CT image
    Ling Zhu
    Feifei Wang
    Xue Chen
    Qian Dong
    Nan Xia
    Jingjing Chen
    Zheng Li
    Chengzhan Zhu
    BMC Medical Imaging, 23