Research on Underwater Object Detection Algorithm Based on YOLOv7

被引:0
|
作者
Shi, Biying [1 ]
Zhang, Lianbo [1 ]
Tang, Jialin [1 ]
Yan Jinghui [1 ]
机构
[1] Beijing Inst Technol, Zhuhai Coll, Zhuhai, Peoples R China
关键词
underwater object detection; YOLOv7; spatial pyramid pooling facility cross stage partial connect; weighted bidirectional feature pyramid network; convolutional block attention module;
D O I
10.1109/CSRSWTC64338.2024.10811640
中图分类号
学科分类号
摘要
Due to the complex background and blurred images in underwater imaging, conventional target detection algorithms don't extract target features well, leading to missed detections. To enhance the accuracy and speed of underwater target detection algorithms, this paper proposes an improved underwater target detection model based on YOLOv7. Firstly, the Spatial Pyramid Pooling Cross Stage Partial Connection module (SPPCSPC) in the YOLOv7 model is replaced with the Spatial Pyramid Pooling Fast Cross Stage Partial Connection module (SPPFCSPC), which maintains the receptive field while reducing the number of parameters and computational requirements, thus increasing the model's speed. Secondly, a weighted Bidirectional Feature Pyramid Network (BiFPN) is utilized to improve the model's ability to fuse multi-scale target features. Lastly, a Convolutional Block Attention Module (CBAM) is embedded to enhance the model's focus on blurred and small target features. Experimental results show that the improved YOLOv7 model achieves an average accuracy of 85.5% on the URPC2021 dataset, which is a 3.2 percentage point improvement over the original YOLOv7 model, with the inference speed remaining the same. The experimental validation demonstrates that the improved algorithm proposed in this paper offers higher detection accuracy without compromising inference speed, providing advantages in underwater complex environment target detection tasks.
引用
收藏
页码:501 / 506
页数:6
相关论文
共 50 条
  • [41] Object Detection Based on Improved YOLOv7 for UAV Aerial Image
    Cui, Liqun
    Cao, Huawei
    Computer Engineering and Applications, 60 (20): : 189 - 197
  • [42] YOLOv7-sea: Object Detection of Maritime UAV Images based on Improved YOLOv7
    Zhao, Hangyue
    Zhang, Hongpu
    Zhao, Yanyun
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW), 2023, : 233 - 238
  • [43] MCA-YOLOv7: An Improved UAV Target Detection Algorithm Based on YOLOv7
    Qin, Zhiyong
    Chen, Dike
    Wang, Hongyuan
    IEEE ACCESS, 2024, 12 : 42642 - 42650
  • [44] Improved YOLOv7 for UAV Image Object Detection
    Zou, Zhentao
    Li, Zeping
    Computer Engineering and Applications, 60 (08): : 173 - 181
  • [45] Multi-scenario pear tree inflorescence detection based on improved YOLOv7 object detection algorithm
    Zhang, Zhen
    Lei, Xiaohui
    Huang, Kai
    Sun, Yuanhao
    Zeng, Jin
    Xyu, Tao
    Yuan, Quanchun
    Qi, Yannan
    Herbst, Andreas
    Lyu, Xiaolan
    FRONTIERS IN PLANT SCIENCE, 2024, 14
  • [46] YOLOv7-SiamFF: Industrial defect detection algorithm based on improved YOLOv7
    Yi, Feifan
    Zhang, Haigang
    Yang, Jinfeng
    He, Liming
    Mohamed, Ahmad Sufril Azlan
    Gao, Shan
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 114
  • [47] Real-time underwater target detection based on improved YOLOv7
    Wu, Qingqi
    Cen, Lihui
    Kan, Shichao
    Zhai, Yongping
    Chen, Xiaofang
    Zhang, Hong
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2025, 22 (01)
  • [48] Detection Algorithm of Laboratory Personnel Irregularities Based on Improved YOLOv7
    Yang, Yongliang
    Xu, Linghua
    Luo, Maolin
    Wang, Xiao
    Cao, Min
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 78 (02): : 2741 - 2765
  • [49] An Apricot Detection Algorithm in Complex Environments Based on Improved YOLOv7
    Guo, Qiang
    Ma, Chi
    Hu, Hui
    IAENG International Journal of Computer Science, 2024, 51 (12) : 2135 - 2144
  • [50] YOLOv7-PE: A Precise and Efficient Enhancement of YOLOv7 for Underwater Target Detection
    Li, Zhichuang
    Xie, Haijun
    Feng, Jingyi
    Wang, Zhenbo
    Yuan, Zizhao
    IEEE ACCESS, 2024, 12 : 133937 - 133951