Relating CNN-Transformer Fusion Network for Remote Sensing Change Detection

被引:0
|
作者
Gao, Yuhao [1 ]
Pei, Gensheng [1 ]
Sheng, Mengmeng [1 ]
Sun, Zeren [1 ]
Chen, Tao [1 ]
Yao, Yazhou [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Change Detection; Cross-Stage Aggregation; Multi-Scale Fusion; VISUAL RECOGNITION;
D O I
10.1109/ICME57554.2024.10687791
中图分类号
学科分类号
摘要
While deep learning, particularly convolutional neural networks (CNNs), has revolutionized remote sensing (RS) change detection (CD), existing approaches often miss crucial features due to neglecting global context and incomplete change learning. Additionally, transformer networks struggle with low-level details. RCTNet addresses these limitations by introducing (1) an early fusion backbone to exploit both spatial and temporal features early on, (2) a Cross-Stage Aggregation (CSA) module for enhanced temporal representation, (3) a Multi-Scale Feature Fusion (MSF) module for enriched feature extraction in the decoder, and (4) an Efficient Self-deciphering Attention (ESA) module utilizing transformers to capture global information and finegrained details for accurate change detection. Extensive experiments demonstrate RCTNet's clear superiority over traditional RS image CD methods, showing significant improvement and an optimal balance between accuracy and computational cost. Our source codes and pre-trained models are available at: https: //github.com/NUST- Machine- Intelligence-Laboratory/RCTNet.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] CT-Net: an interpretable CNN-Transformer fusion network for fNIRS classification
    Liao, Lingxiang
    Lu, Jingqing
    Wang, Lutao
    Zhang, Yongqing
    Gao, Dongrui
    Wang, Manqing
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2024, 62 (10) : 3233 - 3247
  • [42] CNN and Transformer Fusion for Remote Sensing Image Semantic Segmentation
    Chen, Xin
    Li, Dongfen
    Liu, Mingzhe
    Jia, Jiaru
    REMOTE SENSING, 2023, 15 (18)
  • [43] Transformer-based multi-scale feature fusion network for remote sensing change detection
    Liang, Shike
    Hua, Zhen
    Li, Jinjiang
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (04)
  • [44] Object Detection Algorithm Based on CNN-Transformer Dual Modal Feature Fusion
    Yang Chen
    Hou Zhiqiang
    Li Xinyue
    Ma Sugang
    Yang Xiaobao
    ACTA PHOTONICA SINICA, 2024, 53 (03)
  • [45] Hybrid CNN-Transformer Network for Electricity Theft Detection in Smart Grids
    Bai, Yu
    Sun, Haitong
    Zhang, Lili
    Wu, Haoqi
    SENSORS, 2023, 23 (20)
  • [46] SaltFormer: A hybrid CNN-Transformer network for automatic salt dome detection
    Li, Yang
    Peng, Suping
    He, Dengke
    COMPUTERS & GEOSCIENCES, 2025, 195
  • [47] A lightweight distillation CNN-transformer architecture for remote sensing image super-resolution
    Wang, Yu
    Shao, Zhenfeng
    Lu, Tao
    Liu, Lifeng
    Huang, Xiao
    Wang, Jiaming
    Jiang, Kui
    Zeng, Kangli
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2023, 16 (01) : 3560 - 3579
  • [48] SwinSUNet: Pure Transformer Network for Remote Sensing Image Change Detection
    Zhang, Cui
    Wang, Liejun
    Cheng, Shuli
    Li, Yongming
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [49] CMTFNet: CNN and Multiscale Transformer Fusion Network for Remote-Sensing Image Semantic Segmentation
    Wu, Honglin
    Huang, Peng
    Zhang, Min
    Tang, Wenlong
    Yu, Xinyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [50] SMNet: Symmetric Multi-Task Network for Semantic Change Detection in Remote Sensing Images Based on CNN and Transformer
    Niu, Yiting
    Guo, Haitao
    Lu, Jun
    Ding, Lei
    Yu, Donghang
    REMOTE SENSING, 2023, 15 (04)