IMCGNN: Information Maximization based Continual Graph Neural Networks for inductive node classification

被引:1
|
作者
Yuan, Qiao [1 ,2 ]
Guan, Sheng-Uei [2 ]
Luo, Tianlun [1 ,2 ]
Man, Ka Lok [2 ]
Lim, Eng Gee [2 ]
机构
[1] UNIV LIVERPOOL, LIVERPOOL L69 3BX, England
[2] Xian Jiaotong Liverpool Univ, Suzhou 215123, Peoples R China
关键词
Continual graph learning; Experience replay; Deep learning; HIPPOCAMPUS;
D O I
10.1016/j.neucom.2025.129362
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Continual graph learning is an emerging topic that enables models to incrementally acquire new knowledge while retaining prior experiences. It efficiently adapts to model evolving dynamic graphs, avoiding the computational burden of training from scratch. The key distinction of CGL from conventional continual learning is the interdependence of samples in graph-structured data versus the independence in conventional learning. Consequently, continual graph learning techniques should emphasize consolidating and leveraging the topological information in graph-structured data. Current methods inadequately address this need. Some approaches ignore topological information, resulting in significant information loss. Others attempt to preserve all learned information, leading to overly conservative models. Moreover, most of these methods employ graph neural networks (GNNs) as the base model, yet they fail to fully utilize the topological information learned by GNNs. Additionally, the majority of existing works focus on transductive setting, with inductive continual graph learning problems being scarcely explored. Our proposed Information Maximization based Continual Graph Neural Network (IMCGNN) focuses on inductive task-incremental node classification problems. This proposed work involves a replay module and a regularization module. The former extracts representative subgraphs from previous data, training them jointly with new data to retain historical experiences, whereas the latter preserves topological information and loss-related information with encoded knowledge by imposing elastic penalties on network parameters. Unlike heuristic node selection, our approach utilizes the information theory to guide node selection informing a subgraph, aiming to preserve information better. Comparative experiments with nine baselines using two graph learning models on five benchmark datasets demonstrate the effectiveness and efficiency of our method.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Graph neural network based node embedding enhancement model for node classification
    Zeng J.-X.
    Wang P.-H.
    Ding Y.-D.
    Lan L.
    Cai L.-X.
    Guan X.-H.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (02): : 219 - 225
  • [42] Anomalous Node Detection in Blockchain Networks Based on Graph Neural Networks
    Chang, Ze
    Cai, Yunfei
    Liu, Xiao Fan
    Xie, Zhenping
    Liu, Yuan
    Zhan, Qianyi
    SENSORS, 2025, 25 (01)
  • [43] Inductive Graph Neural Networks for Spatiotemporal Kriging
    Wu, Yuankai
    Zhuang, Dingyi
    Labbe, Aurelie
    Sun, Lijun
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 4478 - 4485
  • [44] Long-tailed graph neural networks via graph structure learning for node classification
    Junchao Lin
    Yuan Wan
    Jingwen Xu
    Xingchen Qi
    Applied Intelligence, 2023, 53 : 20206 - 20222
  • [45] DEMO-Net: Degree-specific Graph Neural Networks for Node and Graph Classification
    Wu, Jun
    He, Jingrui
    Xu, Jiejun
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 406 - 415
  • [46] Evaluation of Anomaly Detection for Cybersecurity Using Inductive Node Embedding with Convolutional Graph Neural Networks
    Abou Rida, Amani
    Amhaz, Rabih
    Parrend, Pierre
    COMPLEX NETWORKS & THEIR APPLICATIONS X, VOL 2, 2022, 1016 : 563 - 574
  • [47] Long-tailed graph neural networks via graph structure learning for node classification
    Lin, Junchao
    Wan, Yuan
    Xu, Jingwen
    Qi, Xingchen
    APPLIED INTELLIGENCE, 2023, 53 (17) : 20206 - 20222
  • [48] An Investigation on the Fragility of Graph Neural Networks: the Impact of Node Feature Modification on Graph Classification Accuracy
    Wang, Chengen
    Zhou, Yan
    Jee, Kangkook
    Kantarcioglu, Murat
    2023 5TH IEEE INTERNATIONAL CONFERENCE ON TRUST, PRIVACY AND SECURITY IN INTELLIGENT SYSTEMS AND APPLICATIONS, TPS-ISA, 2023, : 169 - 176
  • [49] Polynomial-based graph convolutional neural networks for graph classification
    Luca Pasa
    Nicolò Navarin
    Alessandro Sperduti
    Machine Learning, 2022, 111 : 1205 - 1237
  • [50] Revisiting Attention-Based Graph Neural Networks for Graph Classification
    Tao, Ye
    Li, Ying
    Wu, Zhonghai
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVII, PPSN 2022, PT I, 2022, 13398 : 442 - 458