An Active Object-Detection Algorithm for Adaptive Attribute Adjustment of Remote-Sensing Images

被引:0
|
作者
Wang, Jianyu [1 ,2 ,3 ]
Zhu, Feng [2 ,3 ]
Wang, Qun [2 ,3 ,4 ]
Zhao, Pengfei [2 ,3 ,4 ]
Fang, Yingjian [2 ,3 ,4 ]
机构
[1] Northeastern Univ, Fac Robot Sci & Engn, Shenyang 110169, Peoples R China
[2] Chinese Acad Sci, Key Lab Optoelect Informat Proc, Shenyang 110016, Peoples R China
[3] Chinese Acad Sci, Shenyang Inst Automat, Shenyang 110016, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
active object detection; adaptive attribute adjustment; end-to-end network; deep reinforcement learning; remote-sensing images;
D O I
10.3390/rs17050818
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent years, the continuous advancement of deep learning has led to significant progress in object-detection technology for remote-sensing images. However, most current detection methods passively perform detection on the input image without considering the relationship between imaging configurations and detection-algorithm performance. Therefore, when factors such as poor lighting conditions, extreme shooting angles, or long acquisition distances degrade image quality, the passive detection framework limits the effectiveness of the current detection algorithm, preventing it from completing the detection task. To address the limitations above, this paper proposes an active object-detection (AOD) method based on deep reinforcement learning, taking adaptive brightness and collection position adjustments as examples. Specifically, we first established an end-to-end network structure to generate attribute control policies. Then, we designed a reward function suitable for remote-sensing images based on the degree of improvement in detection performance. Finally, we propose a new viewpoint-management method in this paper, which is successfully implemented by a training method of long-term Prioritized Experience Replay (LPER), which significantly reduces the accumulation of negative and repetitive samples and improves the success rate of the AOD algorithm for remote-sensing images. The experiments on two public datasets have fully demonstrated the effectiveness and advantages of the algorithm proposed in this paper.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Multiscale Feature Adaptive Fusion for Object Detection in Optical Remote Sensing Images
    Lv, Hao
    Qian, Weixing
    Chen, Tianxiao
    Yang, Han
    Zhou, Xuecheng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [32] Adaptive scale matching for remote sensing object detection based on aerial images
    Han, Lu
    Li, Nan
    Zhong, Zeyuan
    Niu, Dong
    Gao, Bingbing
    IMAGE AND VISION COMPUTING, 2025, 157
  • [33] Adaptive Multilevel Fusion Refinement Network for Object Detection in Remote Sensing Images
    Wang, Yu
    Chen, Hao
    Zhang, Ye
    Li, Guozheng
    Yan, Xing
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 1
  • [34] SUPERVISED ADAPTIVE-RPN NETWORK FOR OBJECT DETECTION IN REMOTE SENSING IMAGES
    Tang, Xu
    Zhang, Huayu
    Ma, Jingjing
    Zhang, Xiangrong
    Jiao, Licheng
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2647 - 2650
  • [35] Scene Learning for Cloud Detection on Remote-Sensing Images
    An, Zhenyu
    Shi, Zhenwei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (08) : 4206 - 4222
  • [36] Transformation-Invariant Network for Few-Shot Object Detection in Remote-Sensing Images
    Liu, Nanqing
    Xu, Xun
    Celik, Turgay
    Gan, Zongxin
    Li, Heng-Chao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 : 1 - 14
  • [37] Superpixel segmentation and machine learning classification algorithm for cloud detection in remote-sensing images
    Shi, Yueting
    Wang, Weijiang
    Gong, Qishu
    Li, Dingyi
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (20): : 6675 - 6679
  • [38] OBJECT-ORIENTED CHANGE DETECTION BASED ON SPATIOTEMPORAL RELATIONSHIP IN MULTITEMPORAL REMOTE-SENSING IMAGES
    Li, Liang
    Ying, Guowei
    Wen, Xuehu
    Zhang, Yun
    36TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT, 2015, 47 (W3): : 1241 - 1248
  • [39] Toward Integrity and Detail With Ensemble Learning for Salient Object Detection in Optical Remote-Sensing Images
    Liu, Kangjie
    Zhang, Borui
    Lu, Jiwen
    Yan, Haibin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [40] MFCANet: Multiscale Feature Context Aggregation Network for Oriented Object Detection in Remote-Sensing Images
    Jiang, Honghui
    Luo, Tingting
    Peng, Hu
    Zhang, Guozheng
    IEEE ACCESS, 2024, 12 : 45986 - 46001