Machine Learning-Based Methods for Materials Inverse Design: A Review

被引:0
|
作者
Liu, Yingli [1 ,2 ]
Cui, Yuting [1 ,2 ]
Zhou, Haihe [1 ,2 ]
Lei, Sheng [3 ]
Yuan, Haibin [3 ]
Shen, Tao [1 ,2 ]
Yin, Jiancheng [4 ]
机构
[1] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650093, Peoples R China
[2] Kunming Univ Sci & Technol, Yunnan Key Lab Comp Technol Applicat, Kunming 650500, Peoples R China
[3] Yunnan Tin Co Ltd, Tin Ind Branch, Gejiu 661000, Peoples R China
[4] Kunming Univ Sci & Technol, Fac Mat Sci & Engn, Kunming 650093, Peoples R China
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2025年 / 82卷 / 02期
基金
中国国家自然科学基金;
关键词
Materials inverse design; machine learning; target properties; deep learning; new materials discovery; DEEP NEURAL-NETWORKS; MATERIALS DISCOVERY; MAGNESIUM ALLOYS; PERFORMANCE; DRIVEN; PREDICTION; ALGORITHM; STRENGTH; PHASE;
D O I
10.32604/cmc.2025.060109
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Finding materials with specific properties is a hot topic in materials science. Traditional materials design relies on empirical and trial-and-error methods, requiring extensive experiments and time, resulting in high costs. With the development of physics, statistics, computer science, and other fields, machine learning offers opportunities for systematically discovering new materials. Especially through machine learning-based inverse design, machine learning algorithms analyze the mapping relationships between materials and their properties to find materials with desired properties. This paper first outlines the basic concepts of materials inverse design and the challenges faced by machine learning-based approaches to materials inverse design. Then, three main inverse design methods-exploration-based, model-based, and optimization-based-are analyzed in the context of different application scenarios. Finally, the applications of inverse design methods in alloys, optical materials, and acoustic materials are elaborated on, and the prospects for materials inverse design are discussed. The authors hope to accelerate the discovery of new materials and provide new possibilities for advancing materials science and innovative design methods.
引用
收藏
页码:1463 / 1492
页数:30
相关论文
共 50 条
  • [41] Review and comparative analysis of machine learning-based phage virion protein identification methods
    Meng, Chaolu
    Zhang, Jun
    Ye, Xiucai
    Guo, Fei
    Zou, Quan
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2020, 1868 (06):
  • [42] Deep Federated Machine Learning-Based Optimization Methods for Liver Tumor Diagnosis: A Review
    Ahmed M. Anter
    Laith Abualigah
    Archives of Computational Methods in Engineering, 2023, 30 (5) : 3359 - 3378
  • [43] Deep Federated Machine Learning-Based Optimization Methods for Liver Tumor Diagnosis: A Review
    Anter, Ahmed M.
    Abualigah, Laith
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (05) : 3359 - 3378
  • [44] Machine learning-based inverse predictive model for AFP based thermoplastic composites
    Wanigasekara, Chathura
    Oromiehie, Ebrahim
    Swain, Akshya
    Prusty, B. Gangadhara
    Nguang, Sing Kiong
    JOURNAL OF INDUSTRIAL INFORMATION INTEGRATION, 2021, 22
  • [45] A Machine Learning-based Inverse Scattering Method for Biomedical Imaging Segmentation
    Du, Naike
    Ye, Xiuzhu
    2024 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND INC/USNCURSI RADIO SCIENCE MEETING, AP-S/INC-USNC-URSI 2024, 2024, : 251 - 252
  • [46] A deep learning-based approach for the inverse design of the Helmholtz resonators
    Dogra, Sourabh
    Singh, Lokendra
    Nigam, Aditya
    Gupta, Arpan
    MATERIALS TODAY COMMUNICATIONS, 2023, 37
  • [47] On the Data Quality and Imbalance in Machine Learning-based Design and Manufacturing-A Systematic Review
    Xie, Jiarui
    Sun, Lijun
    Zhao, Yaoyao Fiona
    ENGINEERING, 2025, 45 : 105 - 131
  • [48] Machine learning-based optimal design of fibrillar adhesives
    Shojaeifard, Mohammad
    Ferraresso, Matteo
    Lucantonio, Alessandro
    Bacca, Mattia
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2025, 22 (223)
  • [49] Review of machine learning-based Mineral Resource estimation
    Mahoob, M. A.
    Celik, T.
    Genc, B.
    JOURNAL OF THE SOUTHERN AFRICAN INSTITUTE OF MINING AND METALLURGY, 2022, 122 (11) : 655 - 664
  • [50] Machine learning-based new approach to films review
    Jassim, Mustafa Abdalrassual
    Abd, Dhafar Hamed
    Omri, Mohamed Nazih
    SOCIAL NETWORK ANALYSIS AND MINING, 2023, 13 (01)