Discrete Representation Learning for Multivariate Time Series

被引:0
|
作者
Ajirak, Marzieh [1 ]
Elbau, Immanuel [1 ]
Solomonov, Nili [1 ]
Grosenick, Logan [1 ]
机构
[1] Cornell Univ, Weill Cornell Med, New York, NY 10021 USA
关键词
Interpretable discrete representation; Gaussian process; Bayesian inference; multivariate time series;
D O I
10.23919/EUSIPCO63174.2024.10715138
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper focuses on discrete representation learning for multivariate time series with Gaussian processes. To overcome the challenges inherent in incorporating discrete latent variables into deep learning models, our approach uses a Gumbel-softmax reparameterization trick to address non-differentiability, enabling joint clustering and embedding through learnable discretization of the latent space. The proposed architecture thus enhances interpretability both by estimating a low-dimensional embedding for high dimensional time series and by simultaneously discovering discrete latent states. Empirical assessments on synthetic and real-world fMRI data validate the model's efficacy, showing improved classification results using our representation.
引用
收藏
页码:1132 / 1136
页数:5
相关论文
共 50 条
  • [31] Reservoir Computing Approaches for Representation and Classification of Multivariate Time Series
    Bianchi, Filippo Maria
    Scardapane, Simone
    Lokse, Sigurd
    Jenssen, Robert
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (05) : 2169 - 2179
  • [33] Statistical analysis of multivariate discrete-valued time series
    Fokianos, Konstantinos
    Fried, Roland
    Kharin, Yuriy
    Voloshko, Valeriy
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 188
  • [34] Temporal representation learning for time series classification
    Hu, Yupeng
    Zhan, Peng
    Xu, Yang
    Zhao, Jia
    Li, Yujun
    Li, Xueqing
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (08): : 3169 - 3182
  • [35] Temporal representation learning for time series classification
    Yupeng Hu
    Peng Zhan
    Yang Xu
    Jia Zhao
    Yujun Li
    Xueqing Li
    Neural Computing and Applications, 2021, 33 : 3169 - 3182
  • [36] Statistical Learning of Discrete States in Time Series
    Li, Hao
    Yang, Haw
    JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 123 (03): : 689 - 701
  • [37] Learning evolving relations for multivariate time series forecasting
    Binh Nguyen-Thai
    Vuong Le
    Ngoc-Dung T. Tieu
    Truyen Tran
    Svetha Venkatesh
    Naeem Ramzan
    Applied Intelligence, 2024, 54 : 3918 - 3932
  • [38] Learning Causal Relations in Multivariate Time Series Data
    Wang, Zhenxing
    Chan, Laiwan
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2012, 3 (04)
  • [39] Learning evolving relations for multivariate time series forecasting
    Nguyen-Thai, Binh
    Le, Vuong
    Tieu, Ngoc-Dung T.
    Tran, Truyen
    Venkatesh, Svetha
    Ramzan, Naeem
    APPLIED INTELLIGENCE, 2024, 54 (05) : 3918 - 3932
  • [40] Learning representations of multivariate time series with missing data
    Bianchi, Filippo Maria
    Livi, Lorenzo
    Mikalsen, Karl Oyvind
    Kampffmeyer, Michael
    Jenssen, Robert
    PATTERN RECOGNITION, 2019, 96