Biosimilar insulins: Narrative review of the regulatory framework and registration studies

被引:0
|
作者
Heise, Tim [1 ]
Devries, J. Hans [1 ]
机构
[1] Profil, Hellersbergstr 9, D-41460 Neuss, Germany
关键词
biosimilar insulin; insulin analogues; insulin therapy; pharmacodynamics; SUBCUTANEOUS INSULIN; GLARGINE LANTUS(R); CONTROLLED-TRIAL; EFFICACY; SAFETY; LISPRO; ANTIBODIES; PRODUCTS; GLULISINE; SAR342434;
D O I
10.1111/dom.16320
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Biosimilar insulins have been commercially available in the EU since 2014. Currently, six biosimilar insulins are approved in the EU and four in the US. However, commercial success has been limited, which may be in part due to concerns among physicians and people with diabetes that biosimilar insulins are substandard in efficacy, safety, and quality compared to reference products. Indeed, unlike generic drugs, which are identical chemical copies of their reference counterparts, in a biological manufacturing process, subtle differences can arise between products, even if the tertiary molecular structures are the same. Therefore, there is a clear regulatory pathway for the approval of biosimilars. For biosimilar insulins, preclinical (hormone receptor and cell) studies are needed to investigate potential differences in the response to biosimilar insulins and their reference medicinal products. In addition, there is a requirement for pivotal clinical pharmacology studies involving the euglycaemic glucose clamp technique to investigate comparative time-action profiles, whereas later-phase clinical safety, efficacy, and immunogenicity studies usually are no longer needed for the approval of biosimilar insulins. This narrative review provides an overview of pivotal phase 1 clamp and supportive larger phase 3 studies that supported the registration of biosimilar insulins in the EU and US, and discusses the need for interchangeability and immunogenicity studies. Overall, the current regulatory approach in the EU and in the USA ensures that there are no relevant differences between biosimilar insulins and their reference products. Therefore, people with diabetes and prescribers can use EU or US approved biosimilars without any concerns.Plain Language SummarySix biosimilar insulins are approved by the EU regulator, the European Medicines Agency, and are currently available on the EU market. Three biosimilar insulins are approved by the US regulator, the Food and Drugs Agency, and are currently available on the US market. However, commercial success has been limited, which may be in part due to concerns among physicians and people with diabetes that biosimilar insulins are perhaps not quite the same as the original products with respect to efficacy, safety, and quality. Such concerns could be valid, because unlike generic drugs, which are identical chemical copies of their reference counterparts, biosimilar protein biosimilar and originator drugs cannot be chemically identical. In a biological manufacturing process, subtle difference can and will arise between products, even if the tertiary molecular structures, that is the amino acid sequence, the interactions between different parts of the protein and the three-dimensional folding, are the same. To assure that these unavoidable subtle differences do not result in differences in efficacy, safety and quality, there is a clear regulatory pathway for the approval of biosimilars. In addition to chemical studies, preclinical studies are needed to investigate potential differences in the response to biosimilar insulins and their reference medicinal products. These include e.g. studies investigating affinity to the insulin receptor, and how the insulins induce their effect in cell models. Next, pivotal clinical pharmacology studies involving the euglycaemic glucose clamp technique to investigate comparative time action profiles are required. Later phase clinical safety, efficacy and immunogenicity studies usually are no longer needed for the approval of biosimilar insulins. This narrative review provides an overview of pivotal phase 1 clamp and supportive larger phase 3 studies which supported registration of biosimilar insulins in the EU and US, and discusses the need for interchangeability and immunogenicity studies. Overall, the current regulatory approach in the EU and in the USA ensures that there are no relevant differences between biosimilar insulins and their reference products. Therefore, people with diabetes and prescribers can use EU or US approved biosimilars without any concerns.Plain Language SummarySix biosimilar insulins are approved by the EU regulator, the European Medicines Agency, and are currently available on the EU market. Three biosimilar insulins are approved by the US regulator, the Food and Drugs Agency, and are currently available on the US market. However, commercial success has been limited, which may be in part due to concerns among physicians and people with diabetes that biosimilar insulins are perhaps not quite the same as the original products with respect to efficacy, safety, and quality. Such concerns could be valid, because unlike generic drugs, which are identical chemical copies of their reference counterparts, biosimilar protein biosimilar and originator drugs cannot be chemically identical. In a biological manufacturing process, subtle difference can and will arise between products, even if the tertiary molecular structures, that is the amino acid sequence, the interactions between different parts of the protein and the three-dimensional folding, are the same. To assure that these unavoidable subtle differences do not result in differences in efficacy, safety and quality, there is a clear regulatory pathway for the approval of biosimilars. In addition to chemical studies, preclinical studies are needed to investigate potential differences in the response to biosimilar insulins and their reference medicinal products. These include e.g. studies investigating affinity to the insulin receptor, and how the insulins induce their effect in cell models. Next, pivotal clinical pharmacology studies involving the euglycaemic glucose clamp technique to investigate comparative time action profiles are required. Later phase clinical safety, efficacy and immunogenicity studies usually are no longer needed for the approval of biosimilar insulins. This narrative review provides an overview of pivotal phase 1 clamp and supportive larger phase 3 studies which supported registration of biosimilar insulins in the EU and US, and discusses the need for interchangeability and immunogenicity studies. Overall, the current regulatory approach in the EU and in the USA ensures that there are no relevant differences between biosimilar insulins and their reference products. Therefore, people with diabetes and prescribers can use EU or US approved biosimilars without any concerns.Plain Language SummarySix biosimilar insulins are approved by the EU regulator, the European Medicines Agency, and are currently available on the EU market. Three biosimilar insulins are approved by the US regulator, the Food and Drugs Agency, and are currently available on the US market. However, commercial success has been limited, which may be in part due to concerns among physicians and people with diabetes that biosimilar insulins are perhaps not quite the same as the original products with respect to efficacy, safety, and quality. Such concerns could be valid, because unlike generic drugs, which are identical chemical copies of their reference counterparts, biosimilar protein biosimilar and originator drugs cannot be chemically identical. In a biological manufacturing process, subtle difference can and will arise between products, even if the tertiary molecular structures, that is the amino acid sequence, the interactions between different parts of the protein and the three-dimensional folding, are the same. To assure that these unavoidable subtle differences do not result in differences in efficacy, safety and quality, there is a clear regulatory pathway for the approval of biosimilars. In addition to chemical studies, preclinical studies are needed to investigate potential differences in the response to biosimilar insulins and their reference medicinal products. These include e.g. studies investigating affinity to the insulin receptor, and how the insulins induce their effect in cell models. Next, pivotal clinical pharmacology studies involving the euglycaemic glucose clamp technique to investigate comparative time action profiles are required. Later phase clinical safety, efficacy and immunogenicity studies usually are no longer needed for the approval of biosimilar insulins. This narrative review provides an overview of pivotal phase 1 clamp and supportive larger phase 3 studies which supported registration of biosimilar insulins in the EU and US, and discusses the need for interchangeability and immunogenicity studies. Overall, the current regulatory approach in the EU and in the USA ensures that there are no relevant differences between biosimilar insulins and their reference products. Therefore, people with diabetes and prescribers can use EU or US approved biosimilars without any concerns.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Experiences of abortion: A narrative review of qualitative studies
    Lie, Mabel L. S.
    Robson, Stephen C.
    May, Carl R.
    BMC HEALTH SERVICES RESEARCH, 2008, 8 (1)
  • [42] Latin American Attachment studies: A narrative review
    Fourment, Katherine
    Espinoza, Camila
    Lima Ribeiro, Ana Carla
    Mesman, Judi
    INFANT MENTAL HEALTH JOURNAL, 2022, 43 (04) : 653 - 676
  • [43] Experiences of abortion: A narrative review of qualitative studies
    Mabel LS Lie
    Stephen C Robson
    Carl R May
    BMC Health Services Research, 8
  • [44] Evolution of tobacco control in India: a narrative review of the legislative and regulatory approach
    Bhatia, Muskan
    Sharma, Nikita
    Saifi, Suzauddin
    Parashar, Swati
    Nisha, Nisha
    Srivastava, Roomani
    Jain, Meena
    REVIEWS ON ENVIRONMENTAL HEALTH, 2024, 39 (01) : 1 - 12
  • [45] A narrative review of regulatory governance factors that shape food and nutrition policies
    Ngqangashe, Yandisa
    Goldman, Sharni
    Schram, Ashley
    Friel, Sharon
    NUTRITION REVIEWS, 2022, 80 (02) : 200 - 214
  • [46] Regulatory role of prolactin in paternal behavior in male parents: A narrative review
    Hashemian, F.
    Shafigh, F.
    Roohi, E.
    JOURNAL OF POSTGRADUATE MEDICINE, 2016, 62 (03) : 182 - 187
  • [47] Environmental risk assessment of propofol in wastewater: a narrative review of regulatory guidelines
    Waspe, J.
    Orr, T.
    ANAESTHESIA, 2023, 78 (03) : 337 - 342
  • [48] Human activity recognition in artificial intelligence framework: a narrative review
    Gupta, Neha
    Gupta, Suneet K.
    Pathak, Rajesh K.
    Jain, Vanita
    Rashidi, Parisa
    Suri, Jasjit S.
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (06) : 4755 - 4808
  • [49] A systematic review of the Narrative Policy Framework: a future research agenda
    Kuenzler, Johanna
    Stauffer, Bettina
    Schlaufer, Caroline
    Song, Geoboo
    Smith-Walter, Aaron
    Jones, Michael D.
    POLICY AND POLITICS, 2025, 53 (01): : 129 - 151
  • [50] The abuse narrative in sport: the findings of a framework synthesis literature review
    Kuhlin, Fanny
    Barker-Ruchti, Natalie
    QUALITATIVE RESEARCH IN SPORT EXERCISE AND HEALTH, 2025,