Complex-valued matrix-vector multiplication using a scalable coherent photonic processor

被引:0
|
作者
Xie, Yiwei [1 ]
Ke, Xiyuan [1 ]
Hong, Shihan [1 ]
Sun, Yuxin [1 ]
Song, Lijia [1 ]
Li, Huan [1 ]
Wang, Pan [1 ]
Dai, Daoxin [1 ,2 ,3 ]
机构
[1] Zhejiang Univ, Coll Opt Sci & Engn, State Key Lab Extreme Photon & Instrumentat, Zhejiang Key Lab Optoelect Informat Technol, Hangzhou 310058, Peoples R China
[2] Zhejiang Univ, Intelligent Opt & Photon Res Ctr, Jiaxing Key Lab Photon Sensing & Intelligent Imagi, Jiaxing 314000, Peoples R China
[3] Zhejiang Univ, Ningbo Res Inst, Ningbo 315100, Peoples R China
来源
SCIENCE ADVANCES | 2025年 / 11卷 / 14期
基金
中国国家自然科学基金;
关键词
CHIP;
D O I
10.1126/sciadv.ads7475
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Matrix-vector multiplication is a fundamental operation in modern signal processing and artificial intelligence. Developing a chip-scale photonic matrix-vector multiplication processor (MVMP) offers the potential for notably enhanced computing speed and energy efficiency beyond microelectronics. Here, we propose and demonstrate a 16-channel programmable on-chip coherent photonic processor capable of performing complex-valued matrix-vector multiplication at a computing speed of 1.28 tera-operations per second (TOPS). Low phase error Mach-Zehnder interferometers mesh and ultralow-loss broadened photonic waveguide delay lines are firstly combined for optical computing, enabling the encoding of amplitude and phase information, along with high-speed coherent detection. The proposed MVMP demonstrates high flexibility in implementing various functions, including arbitrary matrix transformation, parallel image processing, and handwritten digital recognition. Our work demonstrates the MVMP's advantages in scalability and function flexibility, enabled by the low-loss and low phase error designs, making a substantial advancement in high-speed and large-scale photonic computing technologies.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Parallel Sparse Matrix-Vector Multiplication Using Accelerators
    Maeda, Hiroshi
    Takahashi, Daisuke
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2016, PT II, 2016, 9787 : 3 - 18
  • [23] Matrix-vector multiplication in a photorefractive crystal
    Liu, B
    Liu, LR
    Shao, L
    Chen, HQ
    OPTICS COMMUNICATIONS, 1998, 146 (1-6) : 34 - 38
  • [24] Faster Online Matrix-Vector Multiplication
    Larsen, Kasper Green
    Williams, Ryan
    PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 2182 - 2189
  • [25] Sparse Matrix-Vector Multiplication on GPGPUs
    Filippone, Salvatore
    Cardellini, Valeria
    Barbieri, Davide
    Fanfarillo, Alessandro
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2017, 43 (04):
  • [26] FAST QMC MATRIX-VECTOR MULTIPLICATION
    Dick, Josef
    Kuo, Frances Y.
    Le Gia, Quoc T.
    Schwab, Christoph
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (03): : A1436 - A1450
  • [27] A P system for matrix-vector multiplication
    Guo, Ping
    Wei, Li Jiao
    Chen, Hai Zhu
    Journal of Computational and Theoretical Nanoscience, 2015, 12 (11) : 4279 - 4288
  • [28] Inverse-Designed Photonic Computing Core for Parallel Matrix-Vector Multiplication
    Wang, Kaiyuan
    Li, Yunlong
    Zhou, Qihui
    Liu, Deming
    Zheng, Shuang
    Zhang, Minming
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2024, 42 (22) : 8061 - 8071
  • [29] Fourier optical limits of coherent acousto-optic matrix-vector processor
    Naughton, TJ
    OPTICS IN COMPUTING 2000, 2000, 4089 : 181 - 190
  • [30] Designing of processor-time optimal systolic arrays for band matrix-vector multiplication
    Milovanovic, IZ
    Milovanovic, EI
    Milentijevic, IZ
    Stojcev, MK
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 32 (02) : 21 - 31