Zeros of L-functions in low-lying intervals and de Branges spaces

被引:0
|
作者
Ramos, Antonio Pedro [1 ]
机构
[1] Scuola Int Super Studi Avanzati, SISSA, Via Bonomea 265, I-34136 Trieste, Italy
关键词
Low-lying zeros; Reproducing kernels; de Branges spaces; Families of L-functions; FAMILIES;
D O I
10.1016/j.jfa.2024.110788
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a variant of a problem first introduced by Hughes and Rudnick (2003) and generalized by Bernard (2015) concerning conditional bounds for small first zeros in a family of L-functions. Here we seek to estimate the size of the smallest intervals centered at a low-lying height on the critical line for which we can guarantee the existence of a zero in a family of L-functions. This leads us to consider an extremal problem in analysis which we address by applying the framework of de Branges spaces, introduced in this context by Carneiro, Chirre, and Milinovich (2022). (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:32
相关论文
共 50 条
  • [31] One-Level Density of Low-lying Zeros of Quadratic and Quartic Hecke L-functions
    Gao, Peng
    Zhao, Liangyi
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2020, 72 (02): : 427 - 454
  • [32] Low-lying zeroes of symmetric power L-functions
    Güloglu, AM
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (09) : 517 - 550
  • [33] Low-lying zeros of quadratic Dirichlet L-functions: lower order terms for extended support
    Fiorilli, Daniel
    Parks, James
    Sodergren, Anders
    COMPOSITIO MATHEMATICA, 2017, 153 (06) : 1196 - 1216
  • [34] Low-lying Zeros of Quadratic Dirichlet L-Functions, Hyper-elliptic Curves and Random Matrix Theory
    Entin, Alexei
    Roditty-Gershon, Edva
    Rudnick, Zeev
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2013, 23 (04) : 1230 - 1261
  • [35] Low-lying Zeros of Quadratic Dirichlet L-Functions, Hyper-elliptic Curves and Random Matrix Theory
    Alexei Entin
    Edva Roditty-Gershon
    Zeév Rudnick
    Geometric and Functional Analysis, 2013, 23 : 1230 - 1261
  • [36] The low lying zeros of a GL(4) and a GL(6) family of L-functions
    Duenez, Eduardo
    Miller, Steven J.
    COMPOSITIO MATHEMATICA, 2006, 142 (06) : 1403 - 1425
  • [37] ZEROS OF L-FUNCTIONS
    MONTGOMERY, HL
    INVENTIONES MATHEMATICAE, 1969, 8 (04) : 346 - +
  • [38] Zeros of Random Functions Generated with de Branges Kernels
    Antezana, Jorge
    Marzo, Jordi
    Olsen, Jan-Fredrik
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (08) : 2284 - 2299
  • [39] A comparison of zeros of L-functions
    Raghunathan, R
    MATHEMATICAL RESEARCH LETTERS, 1999, 6 (02) : 155 - 167
  • [40] ON ZEROS OF DIRICHLET L-FUNCTIONS
    CHEN, JG
    SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1986, 29 (09): : 897 - 913