Spotiphy enables single-cell spatial whole transcriptomics across an entire section

被引:0
|
作者
Yang, Jiyuan [1 ]
Zheng, Ziqian [2 ]
Jiao, Yun [3 ]
Yu, Kaiwen [4 ]
Bhatara, Sheetal [1 ]
Yang, Xu [1 ]
Natarajan, Sivaraman [1 ]
Zhang, Jiahui [2 ]
Pan, Qingfei [1 ]
Easton, John [1 ]
Yan, Koon-Kiu [1 ]
Peng, Junmin [3 ]
Liu, Kaibo [2 ]
Yu, Jiyang [1 ]
机构
[1] St Jude Childrens Res Hosp, Dept Computat Biol, Memphis, TN 38105 USA
[2] Univ Wisconsin, Dept Ind & Syst Engn, Madison, WI 53706 USA
[3] St Jude Childrens Res Hosp, Dept Struct Biol, Memphis, TN 38105 USA
[4] St Jude Childrens Res Hosp, Ctr Prote & Metabol, Memphis, TN USA
基金
美国国家卫生研究院;
关键词
RNA-SEQ; MICROGLIA; EXPRESSION; ATLAS; HETEROGENEITY;
D O I
10.1038/s41592-025-02622-5
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Spatial transcriptomics (ST) has advanced our understanding of tissue regionalization by enabling the visualization of gene expression within whole-tissue sections, but current approaches remain plagued by the challenge of achieving single-cell resolution without sacrificing whole-genome coverage. Here we present Spotiphy (spot imager with pseudo-single-cell-resolution histology), a computational toolkit that transforms sequencing-based ST data into single-cell-resolved whole-transcriptome images. Spotiphy delivers the most precise cellular proportions in extensive benchmarking evaluations. Spotiphy-derived inferred single-cell profiles reveal astrocyte and disease-associated microglia regional specifications in Alzheimer's disease and healthy mouse brains. Spotiphy identifies multiple spatial domains and alterations in tumor-tumor microenvironment interactions in human breast ST data. Spotiphy bridges the information gap and enables visualization of cell localization and transcriptomic profiles throughout entire sections, offering highly informative outputs and an innovative spatial analysis pipeline for exploring complex biological systems.
引用
收藏
页数:32
相关论文
共 50 条
  • [41] Whole-kidney single-cell transcriptomics identifies new cell types
    Heintze, Jack M.
    NATURE REVIEWS NEPHROLOGY, 2018, 14 (06) : 353 - 353
  • [42] Whole-kidney single-cell transcriptomics identifies new cell types
    Jack M. Heintze
    Nature Reviews Nephrology, 2018, 14 : 353 - 353
  • [43] Analysis of single-cell and spatial transcriptomics in TNBC cell-cell interactions
    Xin, Yan
    Ma, Qiji
    Deng, Qiang
    Wang, Tielin
    Wang, Dongxu
    Wang, Gang
    FRONTIERS IN IMMUNOLOGY, 2025, 16
  • [44] Spatial and Single-Cell Transcriptomics Unraveled Spatial Evolution of Papillary Thyroid Cancer
    Zheng, Guangzhe
    Chen, Shaobo
    Ma, Wanqi
    Wang, Quanshu
    Sun, Li
    Zhang, Changwen
    Chen, Ge
    Zhang, Shuping
    Chen, Shuguang
    ADVANCED SCIENCE, 2025, 12 (02)
  • [45] SpiceMix enables integrative single-cell spatial modeling of cell identity
    Chidester, Benjamin
    Zhou, Tianming
    Alam, Shahul
    Ma, Jian
    NATURE GENETICS, 2023, 55 (01) : 78 - +
  • [46] SpiceMix enables integrative single-cell spatial modeling of cell identity
    Benjamin Chidester
    Tianming Zhou
    Shahul Alam
    Jian Ma
    Nature Genetics, 2023, 55 : 78 - 88
  • [47] Single-cell transcriptomics in dermatology
    Deutsch, Alana
    Mclellan, Beth N.
    Shinoda, Kosaku
    JAAD INTERNATIONAL, 2020, 1 (02): : 182 - 188
  • [48] Quantitative single-cell transcriptomics
    Ziegenhain, Christoph
    Vieth, Beate
    Parekh, Swati
    Hellmann, Ines
    Enard, Wolfgang
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2018, 17 (04) : 220 - 232
  • [49] BACT: nonparametric Bayesian cell typing for single-cell spatial transcriptomics data
    Yan, Yinqiao
    Luo, Xiangyu
    BRIEFINGS IN BIOINFORMATICS, 2025, 26 (01)
  • [50] Combined Single-Cell and Spatial Transcriptomics to Deconvolute the Hematopoietic Stem Cell Niche
    Haas, Simon
    Baccin, Chiara
    Al-Sabah, Jude
    Velten, Lars
    Lars, Steinmetz
    Trumpp, Andreas
    BLOOD, 2018, 132