Spotiphy enables single-cell spatial whole transcriptomics across an entire section

被引:0
|
作者
Yang, Jiyuan [1 ]
Zheng, Ziqian [2 ]
Jiao, Yun [3 ]
Yu, Kaiwen [4 ]
Bhatara, Sheetal [1 ]
Yang, Xu [1 ]
Natarajan, Sivaraman [1 ]
Zhang, Jiahui [2 ]
Pan, Qingfei [1 ]
Easton, John [1 ]
Yan, Koon-Kiu [1 ]
Peng, Junmin [3 ]
Liu, Kaibo [2 ]
Yu, Jiyang [1 ]
机构
[1] St Jude Childrens Res Hosp, Dept Computat Biol, Memphis, TN 38105 USA
[2] Univ Wisconsin, Dept Ind & Syst Engn, Madison, WI 53706 USA
[3] St Jude Childrens Res Hosp, Dept Struct Biol, Memphis, TN 38105 USA
[4] St Jude Childrens Res Hosp, Ctr Prote & Metabol, Memphis, TN USA
基金
美国国家卫生研究院;
关键词
RNA-SEQ; MICROGLIA; EXPRESSION; ATLAS; HETEROGENEITY;
D O I
10.1038/s41592-025-02622-5
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Spatial transcriptomics (ST) has advanced our understanding of tissue regionalization by enabling the visualization of gene expression within whole-tissue sections, but current approaches remain plagued by the challenge of achieving single-cell resolution without sacrificing whole-genome coverage. Here we present Spotiphy (spot imager with pseudo-single-cell-resolution histology), a computational toolkit that transforms sequencing-based ST data into single-cell-resolved whole-transcriptome images. Spotiphy delivers the most precise cellular proportions in extensive benchmarking evaluations. Spotiphy-derived inferred single-cell profiles reveal astrocyte and disease-associated microglia regional specifications in Alzheimer's disease and healthy mouse brains. Spotiphy identifies multiple spatial domains and alterations in tumor-tumor microenvironment interactions in human breast ST data. Spotiphy bridges the information gap and enables visualization of cell localization and transcriptomic profiles throughout entire sections, offering highly informative outputs and an innovative spatial analysis pipeline for exploring complex biological systems.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography
    Alma Andersson
    Joseph Bergenstråhle
    Michaela Asp
    Ludvig Bergenstråhle
    Aleksandra Jurek
    José Fernández Navarro
    Joakim Lundeberg
    Communications Biology, 3
  • [2] Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography
    Andersson, Alma
    Bergenstrahle, Joseph
    Asp, Michaela
    Bergenstrahle, Ludvig
    Jurek, Aleksandra
    Fernandez Navarro, Jose
    Lundeberg, Joakim
    COMMUNICATIONS BIOLOGY, 2020, 3 (01)
  • [3] Single-cell spatial transcriptomics
    Weber, Christine
    NATURE CELL BIOLOGY, 2021, 23 (11) : 1108 - 1108
  • [4] Single-cell spatial transcriptomics
    Christine Weber
    Nature Cell Biology, 2021, 23 : 1108 - 1108
  • [5] Domain generalization enables general cancer cell annotation in single-cell and spatial transcriptomics
    Zhixing Zhong
    Junchen Hou
    Zhixian Yao
    Lei Dong
    Feng Liu
    Junqiu Yue
    Tiantian Wu
    Junhua Zheng
    Gaoliang Ouyang
    Chaoyong Yang
    Jia Song
    Nature Communications, 15
  • [6] Domain generalization enables general cancer cell annotation in single-cell and spatial transcriptomics
    Zhong, Zhixing
    Hou, Junchen
    Yao, Zhixian
    Dong, Lei
    Liu, Feng
    Yue, Junqiu
    Wu, Tiantian
    Zheng, Junhua
    Ouyang, Gaoliang
    Yang, Chaoyong
    Song, Jia
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [7] STEM enables mapping of single-cell and spatial transcriptomics data with transfer learning
    Hao, Minsheng
    Luo, Erpai
    Chen, Yixin
    Wu, Yanhong
    Li, Chen
    Chen, Sijie
    Gao, Haoxiang
    Bian, Haiyang
    Gu, Jin
    Wei, Lei
    Zhang, Xuegong
    COMMUNICATIONS BIOLOGY, 2024, 7 (01)
  • [8] STEM enables mapping of single-cell and spatial transcriptomics data with transfer learning
    Minsheng Hao
    Erpai Luo
    Yixin Chen
    Yanhong Wu
    Chen Li
    Sijie Chen
    Haoxiang Gao
    Haiyang Bian
    Jin Gu
    Lei Wei
    Xuegong Zhang
    Communications Biology, 7
  • [9] Single-cell and spatial transcriptomics in endocrine research
    Matsumoto, Ryusaku
    Yamamoto, Takuya
    ENDOCRINE JOURNAL, 2024, 71 (02) : 101 - 118
  • [10] Spatial transcriptomics-aided localization for single-cell transcriptomics with STALocator
    Li, Shang
    Shen, Qunlun
    Zhang, Shihua
    CELL SYSTEMS, 2025, 16 (02)