Bed sensor ballistocardiogram for non-invasive detection of atrial fibrillation: a comprehensive clinical study

被引:0
|
作者
Sandelin, Jonas [1 ]
Lahdenoja, O. [1 ]
Elnaggar, I [1 ]
Rekola, R. [1 ]
Anzanpour, A. [1 ]
Seifizarei, S. [1 ]
Kaisti, M. [1 ]
Koivisto, T. [1 ]
Lehto, J. [2 ]
Nuotio, J. [2 ,3 ]
Jaakkola, J. [2 ,3 ]
Relander, A. [2 ,3 ]
Vasankari, T. [2 ,3 ]
Airaksinen, J. [2 ,3 ]
Kiviniemi, T. [2 ,3 ]
机构
[1] Univ Turku, Dept Comp, Digital Hlth Technol Grp, Vesilinnantie 3, Turku 20500, Finland
[2] Turku Univ Hosp, Heart Ctr, Vesilinnantie 3, Turku 20500, Finland
[3] Univ Turku, Vesilinnantie 3, Turku 20500, Finland
基金
欧盟地平线“2020”;
关键词
AFib; atrial fibrillation; ballistocardiogram; BCG; bed-sensor; bed; ECG;
D O I
10.1088/1361-6579/adbb52
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Objective. Atrial fibrillation (AFib) is a common cardiac arrhythmia associated with high morbidity and mortality, making early detection and continuous monitoring essential to prevent complications like stroke. This study explores the potential of using a ballistocardiogram (BCG) based bed sensor for the detection of AFib. Approach. We conducted a comprehensive clinical study with night hospital recordings from 116 patients, divided into 72 training and 44 test subjects. The study employs established methods such as autocorrelation to identify AFib from BCG signals. Spot and continuous Holter ECG were used as reference methods for AFib detection against which BCG rhythm classifications were compared. Results. Our findings demonstrate the potential of BCG-based AFib detection, achieving 94% accuracy on the training set using a rule-based method. Furthermore, the machine learning model trained with the training set achieved an AUROC score of 97% on the test set. Significance. This innovative approach shows promise for accurate, non-invasive, and continuous monitoring of AFib, contributing to improved patient care and outcomes, particularly in the context of home-based or hospital settings.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A novel, non-invasive, integral imaging assessment in atrial fibrillation by cardiac tomography
    Morelos-Guzman, Martha
    Minero-Garcia, Larissa
    Jaramillo-Almaguer, Jose E.
    Chavez-Carbajal, Jose F.
    Arean-Martinez, Carlos A.
    Vargas-Espinosa, Juan M.
    Viveros-Sandoval, Martha E.
    Campos-Gonzalez, Israel D.
    ARCHIVOS DE CARDIOLOGIA DE MEXICO, 2021, 91 (01): : 41 - 48
  • [42] Non-invasive organization variation assessment in the onset and termination of paroxysmal atrial fibrillation
    Alcaraz, Raul
    Joaquin Rieta, Jose
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2009, 93 (02) : 148 - 154
  • [43] Time and frequency series combination for non-invasive regularity analysis of atrial fibrillation
    Carlos Vayá
    José Joaquín Rieta
    Medical & Biological Engineering & Computing, 2009, 47 : 687 - 696
  • [44] A non-invasive method to predict electrical cardioversion outcome of persistent atrial fibrillation
    Alcaraz, Raul
    Rieta, Jose Joaquin
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2008, 46 (07) : 625 - 635
  • [45] A review on sample entropy applications for the non-invasive analysis of atrial fibrillation electrocardiograms
    Alcaraz, R.
    Rieta, J. J.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2010, 5 (01) : 1 - 14
  • [46] Activation frequency mapping of atrial fibrillation by non-invasive body surface mapping
    Climent, A. M.
    Rodrigo, M.
    Hernandez-Romero, I.
    Fernandez-Aviles, F.
    Atienza, F.
    Guillem, M. S.
    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2018, 48 : 32 - 33
  • [47] Non-invasive vagal stimulation for paroxysmal atrial fibrillation: a promising treatment strategy?
    Steven, Daniel
    van den Bruck, Jan-Hendrik
    Woermann, Jonas
    Filipovic, Karlo
    Dittrich, Sebastian
    Lueker, Jakob
    Sultan, Arian
    AKTUELLE KARDIOLOGIE, 2021, 10 (03) : 228 - 232
  • [48] MRI Based Non-Invasive Measures Correlates With Invasive Measurements of Left Atrial Diastolic Function in Atrial Fibrillation Patients
    Khurram, Irfan
    Maqbool, Farhan
    Beinart, Roy
    Zipunnikov, Vadim
    Calkins, Hugh
    Nazarian, Saman
    Zimmerman, Stefan L.
    CIRCULATION, 2013, 128 (22)
  • [49] Preoperative Non-Invasive Mapping for Targeted Concomitant Surgical Ablation of Non-Paroxysmal Atrial Fibrillation (PreMap Study)
    Santer, David
    Gahl, Brigitta
    Dogan, Ali
    Bruehlmeier, Florian
    Camponovo, Ulisse
    Maguire, Rory
    Goldiger, Larissa
    Boss, Vanessa
    Weber, Nicole
    Schmuelling, Lena
    Gherca, Stefan
    Bremerich, Jens
    Cueni, Nadine
    Koechlin, Luca
    Kuehne, Michael
    Miazza, Jules
    Reuthebuch, Oliver
    Hollinger, Alexa
    Siegemund, Martin
    Sticherling, Christian
    Eckstein, Friedrich
    Amacher, Simon A.
    JOURNAL OF CLINICAL MEDICINE, 2025, 14 (02)
  • [50] Optical sensor for non-invasive photodynamic detection of oral cancer
    Jequinto, G
    Wilder-Smith, P
    Shibuya, T
    Armstrong, W
    Wong, A
    LASERS IN SURGERY AND MEDICINE, 2003, : 16 - 16