Bed sensor ballistocardiogram for non-invasive detection of atrial fibrillation: a comprehensive clinical study

被引:0
|
作者
Sandelin, Jonas [1 ]
Lahdenoja, O. [1 ]
Elnaggar, I [1 ]
Rekola, R. [1 ]
Anzanpour, A. [1 ]
Seifizarei, S. [1 ]
Kaisti, M. [1 ]
Koivisto, T. [1 ]
Lehto, J. [2 ]
Nuotio, J. [2 ,3 ]
Jaakkola, J. [2 ,3 ]
Relander, A. [2 ,3 ]
Vasankari, T. [2 ,3 ]
Airaksinen, J. [2 ,3 ]
Kiviniemi, T. [2 ,3 ]
机构
[1] Univ Turku, Dept Comp, Digital Hlth Technol Grp, Vesilinnantie 3, Turku 20500, Finland
[2] Turku Univ Hosp, Heart Ctr, Vesilinnantie 3, Turku 20500, Finland
[3] Univ Turku, Vesilinnantie 3, Turku 20500, Finland
基金
欧盟地平线“2020”;
关键词
AFib; atrial fibrillation; ballistocardiogram; BCG; bed-sensor; bed; ECG;
D O I
10.1088/1361-6579/adbb52
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Objective. Atrial fibrillation (AFib) is a common cardiac arrhythmia associated with high morbidity and mortality, making early detection and continuous monitoring essential to prevent complications like stroke. This study explores the potential of using a ballistocardiogram (BCG) based bed sensor for the detection of AFib. Approach. We conducted a comprehensive clinical study with night hospital recordings from 116 patients, divided into 72 training and 44 test subjects. The study employs established methods such as autocorrelation to identify AFib from BCG signals. Spot and continuous Holter ECG were used as reference methods for AFib detection against which BCG rhythm classifications were compared. Results. Our findings demonstrate the potential of BCG-based AFib detection, achieving 94% accuracy on the training set using a rule-based method. Furthermore, the machine learning model trained with the training set achieved an AUROC score of 97% on the test set. Significance. This innovative approach shows promise for accurate, non-invasive, and continuous monitoring of AFib, contributing to improved patient care and outcomes, particularly in the context of home-based or hospital settings.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Non-invasive Detection of Reentrant Drivers during Atrial Fibrillation: a Clinical-Computational Study
    Rodrigo, Miguel
    Climent, Andreu M.
    Liberos, Alejandro
    Pedron-Torrecilla, Jorge
    Millet, Jose
    Fernandez-Aviles, Francisco
    Atienza, Felipe
    Berenfeld, Omer
    Guillem, Maria S.
    2014 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), VOL 41, 2014, 41 : 9 - 12
  • [2] Non-Invasive Detection of Higher Frequency Atrial Sources During Atrial Fibrillation
    Castells, Francisco
    Llinares, Raul
    Climent, Andreu M.
    Atienza, Felipe
    Igual, Jorge
    Millet, Jose
    Guillem, Maria S.
    2012 COMPUTING IN CARDIOLOGY (CINC), VOL 39, 2012, 39 : 201 - 204
  • [3] Detection of atrial fibrillation using a simple non-invasive risk prediction score
    Schmidt, C.
    Kallenberger, S.
    Schmid, C.
    Mereles, D.
    Wiedmann, F.
    Hilbel, T.
    Katus, H.
    Thomas, D.
    EUROPEAN HEART JOURNAL, 2016, 37 : 1347 - 1347
  • [4] Clinical assessment of a non-invasive wearable MEMS pressure sensor array for monitoring of arterial pulse waveform, heart rate and detection of atrial fibrillation
    Matti Kaisti
    Tuukka Panula
    Joni Leppänen
    Risto Punkkinen
    Mojtaba Jafari Tadi
    Tuija Vasankari
    Samuli Jaakkola
    Tuomas Kiviniemi
    Juhani Airaksinen
    Pekka Kostiainen
    Ulf Meriheinä
    Tero Koivisto
    Mikko Pänkäälä
    npj Digital Medicine, 2
  • [5] Clinical assessment of a non-invasive wearable MEMS pressure sensor array for monitoring of arterial pulse waveform, heart rate and detection of atrial fibrillation
    Kaisti, Matti
    Panula, Tuukka
    Leppanen, Joni
    Punkkinen, Risto
    Tadi, Mojtaba Jafari
    Vasankari, Tuija
    Jaakkola, Samuli
    Kiviniemi, Tuomas
    Airaksinen, Juhani
    Kostiainen, Pekka
    Meriheina, Ulf
    Koivisto, Tero
    Pankaala, Mikko
    NPJ DIGITAL MEDICINE, 2019, 2 (1)
  • [6] Errors and pitfalls in the non-invasive management of atrial fibrillation
    Korantzopoulos, P
    Kolettis, TM
    Goudevenos, JA
    Siogas, K
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2005, 104 (02) : 125 - 130
  • [7] Cost of Atrial Fibrillation: Invasive vs Non-Invasive Management in 2012
    Khaykin, Yaariv
    Shamiss, Yana
    CURRENT CARDIOLOGY REVIEWS, 2012, 8 (04) : 368 - 373
  • [8] A Wavelet-Based Method for Non-Invasive Dominant Frequency Detection in Atrial Fibrillation
    Marques, Victor g
    Rodrigo, Miguel
    Guillem, Maria S.
    Salinet, Joao
    2020 COMPUTING IN CARDIOLOGY, 2020,
  • [9] Non-invasive mapping of persistent atrial fibrillation and dextroposition of the heart
    Osorio-Jaramillo, Emilio
    Klenk, Sarah
    Angleitner, Philipp
    Rudzinski, Piotr N.
    Laufer, Guenther
    Ad, Niv
    Ehrlich, Marek P.
    IJC HEART & VASCULATURE, 2020, 30
  • [10] Non-invasive monitoring of cerebral hemodynamics during atrial fibrillation
    Saglietto, Andrea
    Canova, Daniela
    Gianotto, Nefer
    Ferrandino, Ivan
    Scarsoglio, Stefania
    Ridolfi, Luca
    Anselmino, Matteo
    Giustetto, Carla
    De Ferrari, Gaetano Maria
    EUROPEAN HEART JOURNAL SUPPLEMENTS, 2019, 21 (0J) : J25 - J26