Experimental investigation of the influence of venting gases on thermal runaway propagation in lithium-ion batteries with enclosed packaging

被引:1
|
作者
Peng, Rongqi [1 ]
Kong, Depeng [1 ,3 ]
Ping, Ping [2 ,3 ]
Gao, Wei [4 ]
Wang, Gongquan [1 ]
Gong, Shenglan [1 ]
Yang, Can [1 ]
Gao, Xinzeng [1 ]
He, Xu [1 ]
机构
[1] China Univ Petr East China, Ctr Offshore Engn & Safety Technol, Qingdao 266580, Peoples R China
[2] China Univ Petr East China, Coll Chem Engn, Qingdao 266580, Peoples R China
[3] China Univ Petr East China, State Key Lab Chem Safety, Qingdao 266580, Peoples R China
[4] Dalian Univ Technol, Dept Chem Machinery & Safety Engn, State Key Lab Fine Chem, Dalian 116024, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery safety; Thermal runaway propagation; Venting gas; Battery packaging; BEHAVIOR;
D O I
10.1016/j.etran.2024.100388
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Thermal runaway (TR) of lithium-ion batteries (LIBs) involves venting high-temperature combustible gases. Common enclosure-style battery packs without specialized venting can constrain these gases, potentially promoting thermal runaway propagation (TRP) within the module. To clarify the impact of unignited TR venting gases on TRP, this study conducted comparative experiments on LiFePO4 modules with normal packaging (NP) and isolated venting packaging (IVP). In NP, the module's top includes baffles allowing venting to spread, whereas IVP uses dedicated airflow channels to isolate venting. Quantitative analyses of TRP behavior, temperature, and mass loss rates were conducted under varying heating positions and states of charge (SOCs). Results indicated that NP modules exhibited faster TRP in all tests due to heat accumulation from venting gases in the semi-enclosed space between cell surfaces and packaging, compared to IVP. In the side heating scenario, TR behavior of SOC 100 % NP modules was more severe, with an average heat contribution from TR venting gases of front-end cells just before safety valve activation in back-end cells being 27.3 %, while not all cells underwent TR under IVP. Under intermediate heating, lower SOCs caused TR venting gas heat contribution to decrease from 27.4 % at SOC 100 %-8 % at SOC 50 %. These findings demonstrate that venting gases from TR cells significantly accelerate TRP in enclosed structures, highlighting the critical importance of packaging design for safety. Consequently, venting gases should be directed away from the module and effective thermal insulation measures implemented to reduce TRP risk.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Experimental investigation and visualization on thermal runaway of hard prismatic lithium-ion batteries used in smart phones
    Yih-Shing Duh
    Kai Hsuan Lin
    Chen-Shan Kao
    Journal of Thermal Analysis and Calorimetry, 2018, 132 : 1677 - 1692
  • [42] Preventing Thermal Runaway Propagation in Lithium-ion Batteries using a Passive Liquid Housing
    Lee, Seungmin
    Kwon, Minseo
    Kim, Youngsik
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (03)
  • [43] Study on the Thermal Runaway and Its Propagation of Lithium-Ion Batteries Under Low Pressure
    Huaibin Wang
    Zhiming Du
    Ling Liu
    Zelin Zhang
    Jinyuan Hao
    Qinzheng Wang
    Shuang Wang
    Fire Technology, 2020, 56 : 2427 - 2440
  • [44] Effect of flame heating on thermal runaway propagation of lithium-ion batteries in confined space
    Zhang, Yue
    Zhao, Hengle
    Wang, Gongquan
    Gao, Xinzeng
    Ping, Ping
    Kong, Depeng
    Yin, Xiaokang
    JOURNAL OF ENERGY STORAGE, 2024, 78
  • [45] Study on Thermal Runaway Propagation Characteristics and Cooling Inhibition Mechanism of Lithium-Ion Batteries
    Zheng, Yi
    Chen, Shuo
    Peng, Shengtao
    Feng, Xi
    Wang, Chun
    Zhang, Guangwen
    Zhao, Xiangdi
    FIRE TECHNOLOGY, 2025,
  • [46] Study on the Thermal Runaway and Its Propagation of Lithium-Ion Batteries Under Low Pressure
    Wang, Huaibin
    Du, Zhiming
    Liu, Ling
    Zhang, Zelin
    Hao, Jinyuan
    Wang, Qinzheng
    Wang, Shuang
    FIRE TECHNOLOGY, 2020, 56 (06) : 2427 - 2440
  • [47] Critical conditions for the thermal runaway propagation of lithium-ion batteries in air and argon environments
    Zhu, Yu
    Wang, Zhirong
    Bian, Huan
    Wang, Junling
    Bai, Wei
    Gao, Tianfeng
    Bai, Jinlong
    Zhou, Yuxin
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (23) : 13699 - 13710
  • [48] Critical conditions for the thermal runaway propagation of lithium-ion batteries in air and argon environments
    Yu Zhu
    Zhirong Wang
    Huan Bian
    Junling Wang
    Wei Bai
    Tianfeng Gao
    Jinlong Bai
    Yuxin Zhou
    Journal of Thermal Analysis and Calorimetry, 2022, 147 : 13699 - 13710
  • [49] Experimental study on the vertical thermal runaway propagation in cylindrical Lithium-ion batteries: Effects of spacing and state of charge
    Fang, Jun
    Cai, Jiangning
    He, Xuanze
    APPLIED THERMAL ENGINEERING, 2021, 197
  • [50] The Influence of Airflow Rate on the Thermal Runaway Propagation Characteristics of Lithium-Ion Batteries in a Low-Pressure Environment
    Jian Sun
    Guishu Li
    Song Xie
    Yuanhua He
    Fire Technology, 2022, 58 : 3553 - 3576