Experimental investigation of the influence of venting gases on thermal runaway propagation in lithium-ion batteries with enclosed packaging

被引:1
|
作者
Peng, Rongqi [1 ]
Kong, Depeng [1 ,3 ]
Ping, Ping [2 ,3 ]
Gao, Wei [4 ]
Wang, Gongquan [1 ]
Gong, Shenglan [1 ]
Yang, Can [1 ]
Gao, Xinzeng [1 ]
He, Xu [1 ]
机构
[1] China Univ Petr East China, Ctr Offshore Engn & Safety Technol, Qingdao 266580, Peoples R China
[2] China Univ Petr East China, Coll Chem Engn, Qingdao 266580, Peoples R China
[3] China Univ Petr East China, State Key Lab Chem Safety, Qingdao 266580, Peoples R China
[4] Dalian Univ Technol, Dept Chem Machinery & Safety Engn, State Key Lab Fine Chem, Dalian 116024, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery safety; Thermal runaway propagation; Venting gas; Battery packaging; BEHAVIOR;
D O I
10.1016/j.etran.2024.100388
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Thermal runaway (TR) of lithium-ion batteries (LIBs) involves venting high-temperature combustible gases. Common enclosure-style battery packs without specialized venting can constrain these gases, potentially promoting thermal runaway propagation (TRP) within the module. To clarify the impact of unignited TR venting gases on TRP, this study conducted comparative experiments on LiFePO4 modules with normal packaging (NP) and isolated venting packaging (IVP). In NP, the module's top includes baffles allowing venting to spread, whereas IVP uses dedicated airflow channels to isolate venting. Quantitative analyses of TRP behavior, temperature, and mass loss rates were conducted under varying heating positions and states of charge (SOCs). Results indicated that NP modules exhibited faster TRP in all tests due to heat accumulation from venting gases in the semi-enclosed space between cell surfaces and packaging, compared to IVP. In the side heating scenario, TR behavior of SOC 100 % NP modules was more severe, with an average heat contribution from TR venting gases of front-end cells just before safety valve activation in back-end cells being 27.3 %, while not all cells underwent TR under IVP. Under intermediate heating, lower SOCs caused TR venting gas heat contribution to decrease from 27.4 % at SOC 100 %-8 % at SOC 50 %. These findings demonstrate that venting gases from TR cells significantly accelerate TRP in enclosed structures, highlighting the critical importance of packaging design for safety. Consequently, venting gases should be directed away from the module and effective thermal insulation measures implemented to reduce TRP risk.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Modeling thermal runaway of lithium-ion batteries with a venting process
    He, C. X.
    Yue, Q. L.
    Chen, Q.
    Zhao, T. S.
    APPLIED ENERGY, 2022, 327
  • [2] A Comprehensive Model and Experimental Investigation of Venting Dynamics and Mass Loss in Lithium-Ion Batteries Under a Thermal Runaway
    Chen, Ai
    Sahin, Resul
    Stroebel, Marco
    Kottke, Thomas
    Hecker, Stefan
    Fill, Alexander
    BATTERIES-BASEL, 2025, 11 (03):
  • [3] Experimental Investigation of Lithium-Ion Batteries Thermal Runaway Propagation Consequences under Different Triggering Modes
    Yang, Juan
    Liu, Wenhao
    Zhao, Haoyu
    Zhang, Qingsong
    AEROSPACE, 2024, 11 (06)
  • [4] Experimental Investigation on Thermal Runaway Propagation in Lithium-Ion Battery Cell Stack
    Hoelle, Sebastian
    Haberl, Simon
    Rheinfeld, Alexander
    Osswald, Patrick
    Zimmermann, Sascha
    Hinrichsen, Olaf
    2022 IEEE/AIAA TRANSPORTATION ELECTRIFICATION CONFERENCE AND ELECTRIC AIRCRAFT TECHNOLOGIES SYMPOSIUM (ITEC+EATS 2022), 2022, : 1174 - 1179
  • [5] Modeling venting behavior of lithium-ion batteries during thermal runaway propagation by coupling CFD and thermal resistance network
    Wang, Gongquan
    Kong, Depeng
    Ping, Ping
    He, Xiaoqin
    Lv, Hongpeng
    Zhao, Hengle
    Hong, Wanru
    APPLIED ENERGY, 2023, 334
  • [6] The investigation of thermal runaway propagation of lithium-ion batteries under different vertical distances
    Tao, Changfa
    Li, Guangyu
    Zhao, Jianbo
    Chen, Guang
    Wang, Zhigang
    Qian, Yejian
    Cheng, Xiaozhang
    Liu, Xiaoping
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 142 (04) : 1523 - 1532
  • [7] The investigation of thermal runaway propagation of lithium-ion batteries under different vertical distances
    Changfa Tao
    Guangyu Li
    Jianbo Zhao
    Guang Chen
    Zhigang Wang
    Yejian Qian
    Xiaozhang Cheng
    Xiaoping Liu
    Journal of Thermal Analysis and Calorimetry, 2020, 142 : 1523 - 1532
  • [8] Investigation into the effects of emergency spray on thermal runaway propagation within lithium-ion batteries
    Huang, Yuqi
    Lu, Jiajun
    Lu, Yiji
    Liu, Binghe
    JOURNAL OF ENERGY STORAGE, 2023, 66
  • [9] Experimental study on the characteristics of thermal runaway propagation process of cylindrical lithium-ion batteries
    Ke, Wei
    Zhang, Yanlin
    Zhou, Bo
    Wu, Chengyi
    Liu, Yan
    Xu, Min
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 11379 - 11394
  • [10] Influence of inhomogeneous state of charge distributions on thermal runaway propagation in lithium-ion batteries
    Theiler, Michael
    Baumann, Alexander
    Endisch, Christian
    JOURNAL OF ENERGY STORAGE, 2024, 95