Comprehensive Building Fire Risk Prediction Using Machine Learning and Stacking Ensemble Methods

被引:0
|
作者
Ahn, Seungil [1 ]
Won, Jinsub [1 ]
Lee, Jangchoon [1 ]
Choi, Changhyun [2 ]
机构
[1] Korean Fire Protect Assoc, Insurance Data Team, Seoul 07328, South Korea
[2] KB Claims Survey & Adjusting, R&D Planning Ctr, Seoul 06212, South Korea
来源
FIRE-SWITZERLAND | 2024年 / 7卷 / 10期
关键词
fire risk prediction; building fires; machine learning algorithms; stacking ensemble model; fire prevention; MODEL;
D O I
10.3390/fire7100336
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Building fires pose a critical threat to life and property. Therefore, accurate fire risk prediction is essential for effective building fire prevention and mitigation strategies. This study presents a novel approach to predicting fire risk in buildings by leveraging advanced machine learning techniques and integrating diverse datasets. Our proposed model incorporates a comprehensive range of 34 variables, including building attributes, land characteristics, and demographic information, to construct a robust risk assessment framework. We applied 16 distinct machine learning algorithms, integrating them into a stacking ensemble model to address the limitations of individual models and significantly improve the model's predictive reliability. The ensemble model classifies fire risk into five distinct categories. Notably, although the highest-risk category comprises only 22% of buildings, it accounts for 54% of actual fires, highlighting the model's practical value. This research advances fire risk prediction methodologies by offering stakeholders a powerful tool for informed decision-making in fire prevention, insurance assessments, and emergency response planning.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] A stacking ensemble machine learning method for early identification of students at risk of dropout
    Talamas-Carvajal, Juan Andres
    Ceballos, Hector G.
    EDUCATION AND INFORMATION TECHNOLOGIES, 2023, 28 (09) : 12169 - 12189
  • [32] A Stacking Ensemble Learning Framework for Genomic Prediction
    Liang, Mang
    Chang, Tianpeng
    An, Bingxing
    Duan, Xinghai
    Du, Lili
    Wang, Xiaoqiao
    Miao, Jian
    Xu, Lingyang
    Gao, Xue
    Zhang, Lupei
    Li, Junya
    Gao, Huijiang
    FRONTIERS IN GENETICS, 2021, 12
  • [33] Obesity Prediction Using Ensemble Machine Learning Approaches
    Jindal, Kapil
    Baliyan, Niyati
    Rana, Prashant Singh
    RECENT FINDINGS IN INTELLIGENT COMPUTING TECHNIQUES, VOL 2, 2018, 708 : 355 - 362
  • [34] Oil Price Prediction Using Ensemble Machine Learning
    Gabralla, Lubna A.
    Jammazi, Rania
    Abraham, Ajith
    2013 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRICAL AND ELECTRONICS ENGINEERING (ICCEEE), 2013, : 674 - 679
  • [35] Risk prediction with machine learning and regression methods
    Steyerberg, Ewout W.
    van der Ploeg, Tjeerd
    Van Calster, Ben
    BIOMETRICAL JOURNAL, 2014, 56 (04) : 601 - 606
  • [36] Pitch Accent Prediction Using Ensemble Machine Learning
    Zhang, Aiying
    Ni, Chongjia
    ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL I, PROCEEDINGS, 2009, : 444 - 447
  • [37] Optimal Spatial Prediction Using Ensemble Machine Learning
    Davies, Molly Margaret
    van der Laan, Mark J.
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2016, 12 (01): : 179 - 201
  • [38] Ensemble stacking of machine learning models for air quality prediction for Hyderabad city in India
    Ravindiran, Gokulan
    Karthick, K.
    Maria, Azees
    Rajamanickam, Sivarethinamohan
    Datta, Deepshikha
    Das, Bimal
    Shyamala, G.
    Hayder, Gasim
    Maria, Azees
    ISCIENCE, 2025, 28 (02)
  • [39] Ensemble machine learning models for aviation incident risk prediction
    Zhang, Xiaoge
    Mahadevan, Sankaran
    DECISION SUPPORT SYSTEMS, 2019, 116 : 48 - 63
  • [40] Ensemble methods in machine learning
    Dietterich, TG
    MULTIPLE CLASSIFIER SYSTEMS, 2000, 1857 : 1 - 15