A note on the topological synchronization of unimodal maps

被引:0
|
作者
Gianfelice, Michele [1 ]
机构
[1] Univ Calabria, Dipartimento Matemat & Informat, Campus Arcavacata,Ponte P Bucci Cubo 30B, I-87036 Arcavacata Di Rende, CS, Italy
关键词
coupled dynamical systems; unimodal maps; master-slave system; Markov chains; random dynamical systems; topological synchronisation;
D O I
10.1088/1361-6544/ad95d5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we complete the analysis carried on in Caby et al (2023 Nonlinearity36 3603-21) about the topological synchronisation of unimodal maps of the interval coupled in a master-slave configuration, by answering to the questions raised in that Paper. Namely, we compute the weak limits of the invariant measure of the coupled system as the coupling strength k is an element of ( 0 , 1 ) tends to 0 and to 1 and discuss the uniqueness of the invariant measure of its random dynamical system counterpart, proving that the convergence of the associated Markov chain to its unique stationary measure is geometric.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Unimodal maps and hierarchical models
    Yampolsky, M
    Graphs and Patterns in Mathematics and Theoretical Physics, Proceedings, 2005, 73 : 339 - 357
  • [22] UNIVERSAL ENCODING FOR UNIMODAL MAPS
    ISOLA, S
    POLITI, A
    JOURNAL OF STATISTICAL PHYSICS, 1990, 61 (1-2) : 263 - 291
  • [23] Renormalization of asymmetric unimodal maps
    Osbaldestin, AH
    Mestel, BD
    STOCHASTIC AND CHAOTIC DYNAMICS IN THE LAKES, 2000, 502 : 369 - 374
  • [24] WAVE NUMBERS FOR UNIMODAL MAPS
    DING, EJ
    PHYSICAL REVIEW A, 1988, 37 (05): : 1827 - 1830
  • [25] SUBTREES OF THE UNIMODAL MAPS TREE
    LAMPREIA, JP
    DASILVA, AR
    RAMOS, JS
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1986, 5C (01): : 159 - 167
  • [26] BIFURCATION FREQUENCY FOR UNIMODAL MAPS
    VARGAS, E
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 141 (03) : 633 - 650
  • [27] UNIMODAL EXPANDING MAPS OF THE INTERVAL
    DU, BS
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1988, 38 (01) : 125 - 130
  • [28] Intermittency in families of unimodal maps
    Homburg, AJ
    Young, T
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2002, 22 : 203 - 225
  • [29] ITINERARIES UNDER UNIMODAL MAPS
    HELMBERG, G
    LECTURE NOTES IN MATHEMATICS, 1985, 1163 : 95 - 100
  • [30] A note on uniform entropy for maps having topological specification property
    Shah, Sejal
    Das, Ruchi
    Das, Tarun
    APPLIED GENERAL TOPOLOGY, 2016, 17 (02): : 123 - 127