A Novel Approach for Solving the Time-Varying Complex-Valued Linear Matrix Inequality Based on Fuzzy-Parameter Zeroing Neural Network

被引:0
|
作者
Luo, Jiajie [1 ]
Li, Jichun [1 ]
Holderbaum, William [2 ]
Li, Jiguang [3 ]
机构
[1] Newcastle Univ, Sch Comp, Newcastle Upon Tyne, Tyne & Wear, England
[2] Univ Salford, Sch Sci Engn & Environm, Manchester, Lancs, England
[3] Univ Salford, North England Robot Innovat Ctr, Manchester, Lancs, England
关键词
zeroing neural network; fuzzy logic system; linear matrix inequality; complex number; FINITE-TIME; ZNN MODELS; DESIGN; EQUATIONS;
D O I
10.1109/CIS-RAM61939.2024.10672985
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Solving linear matrix inequality (LMI) is crucial across diverse fields, and the emergence of zeroing neural networks (ZNN) presents a novel solution for the time-varying LMI (TV-LMI) challenge. However, the application of ZNN to solve the time-varying complex-valued LMI (TVCV-LMI) problem remains unexplored. Therefore, we introduce a novel fuzzy-parameter ZNN (FP-ZNN) model in this study to tackle the TVCV-LMI problem. With the introduction of fuzzy logic system (FLS), the FP-ZNN model is able to adjust the fuzzy convergence parameter (FCP) in a real-time manner, responding to any change in the system error and achieving the best performance. We also use an exponential activation function (EAF) in our study, which makes the FP-ZNN model fixed-time stable. To verify and illustrate the superior features of the elegant FP-ZNN model, detailed theoretical analysis, together with numerical experiments, are provided, and the results emphasize the fixed-time stability and adaptiveness of the FP-ZNN model further. As a novel approach, we provide an elegant solution to the TVCV-LMI problem in this paper.
引用
收藏
页码:543 / 548
页数:6
相关论文
共 50 条
  • [21] A novel predefined-time noise-tolerant zeroing neural network for solving time-varying generalized linear matrix equations
    Li, Shihai
    Ma, Changfeng
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2023, 360 (16): : 11788 - 11808
  • [22] An Efficient TakagiSugeno Fuzzy Zeroing Neural Network for Solving Time-Varying Sylvester Equation
    Hu, Qing
    Zheng, Bing
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (07) : 2401 - 2411
  • [23] Solving Perturbed Time-Varying Linear Equation and Inequality Problem With Adaptive Enhanced and Noise Suppressing Zeroing Neural Network
    Wu, Chaomin
    Huang, Zifan
    Wu, Jiahao
    Lin, Cong
    IEEE ACCESS, 2022, 10 : 77396 - 77405
  • [24] Solving Perturbed Time-Varying Linear Equation and Inequality Problem With Adaptive Enhanced and Noise Suppressing Zeroing Neural Network
    Wu, Chaomin
    Huang, Zifan
    Wu, Jiahao
    Lin, Cong
    IEEE Access, 2022, 10 : 77396 - 77405
  • [25] Novel complex-valued neural network for dynamic complex-valued matrix inversion
    Liao B.
    Xiao L.
    Jin J.
    Ding L.
    Liu M.
    2016, Fuji Technology Press (20) : 132 - 138
  • [26] Novel Complex-Valued Neural Network for Dynamic Complex-Valued Matrix Inversion
    Liao, Bolin
    Xiao, Lin
    Jin, Jie
    Ding, Lei
    Liu, Mei
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2016, 20 (01) : 132 - 138
  • [27] A Novel Robust and Predefined-Time Zeroing Neural Network Solver for Time-Varying Linear Matrix Equation
    Han, Chunhao
    Xu, Jiao
    Zheng, Bing
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (05) : 6048 - 6062
  • [28] A Neural Network for Moore—Penrose Inverse of Time-Varying Complex-Valued Matrices
    Yiyuan Chai
    Haojin Li
    Defeng Qiao
    Sitian Qin
    Jiqiang Feng
    International Journal of Computational Intelligence Systems, 2020, 13 : 663 - 671
  • [29] An efficient zeroing neural network for solving time-varying nonlinear equations
    Behera, Ratikanta
    Gerontitis, Dimitris
    Stanimirovic, Predrag
    Katsikis, Vasilios
    Shi, Yang
    Cao, Xinwei
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (24): : 17537 - 17554
  • [30] An efficient zeroing neural network for solving time-varying nonlinear equations
    Ratikanta Behera
    Dimitris Gerontitis
    Predrag Stanimirović
    Vasilios Katsikis
    Yang Shi
    Xinwei Cao
    Neural Computing and Applications, 2023, 35 : 17537 - 17554