Largest and smallest eigenvalues of matrices and some Hamiltonian properties of graphs

被引:0
|
作者
Li, Rao [1 ]
机构
[1] Univ South Carolina Aiken, Dept Comp Sci Engn & Math, Aiken, SC 29801 USA
来源
关键词
matrix; largest eigenvalue; Hamiltonian graph; traceable graph;
D O I
10.47443/cm.2024.051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G ( V, E) be a graph. Define M(G; alpha, /3) : alpha D + /3A, where D and A are the diagonal matrix and adjacency matrix of G , respectively, and alpha , /3 , are real numbers such that ( alpha, /3) 6 (0 , 0) . Using the largest and smallest eigenvalues of M(G; alpha, /3) with alpha >= /3 > 0 , sufficient conditions for the Hamiltonian and traceable graphs are presented.
引用
收藏
页码:34 / 39
页数:6
相关论文
共 50 条
  • [21] On the Second Smallest and the Largest Normalized Laplacian Eigenvalues of a Graph
    Xiao-guo Tian
    Li-gong Wang
    You Lu
    Acta Mathematicae Applicatae Sinica, English Series, 2021, 37 : 628 - 644
  • [22] Estimation of the eigenvalues and the smallest singular value of matrices
    Zou, Limin
    Jiang, Youyi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (06) : 1203 - 1211
  • [23] Smallest eigenvalues of Hankel matrices for exponential weights
    Chen, Y
    Lubinsky, DS
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 293 (02) : 476 - 495
  • [24] On the second largest Laplacian eigenvalues of graphs
    Li, Jianxi
    Guo, Ji-Ming
    Shiu, Wai Chee
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) : 2438 - 2446
  • [25] Signed analogue of line graphs and their smallest eigenvalues
    Gavrilyuk, Alexander L.
    Munemasa, Akihiro
    Sano, Yoshio
    Taniguchi, Tetsuji
    JOURNAL OF GRAPH THEORY, 2021, 98 (02) : 309 - 325
  • [26] On the limit points of the smallest eigenvalues of regular graphs
    Yu, Hyonju
    DESIGNS CODES AND CRYPTOGRAPHY, 2012, 65 (1-2) : 77 - 88
  • [27] On the limit points of the smallest eigenvalues of regular graphs
    Hyonju Yu
    Designs, Codes and Cryptography, 2012, 65 : 77 - 88
  • [28] Ordering graphs by their largest (least) Aα-eigenvalues
    Guo, Shu-Guang
    Zhang, Rong
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21): : 7049 - 7056
  • [29] On the limit points of the smallest positive eigenvalues of graphs
    Barik, Sasmita
    Mondal, Debabrota
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 715 : 1 - 16
  • [30] Some properties of eigenvalues and eigenvectors of wilkinson matrices
    Wu, Xiao-Qian
    Chen, De-Qiang
    Journal of Donghua University (English Edition), 2011, 28 (02) : 145 - 148