A Note on Hopfian and Co-Hopfian S-Acts

被引:0
|
作者
Roueentan, Mohammad [1 ]
Khosravi, Roghaieh [2 ]
机构
[1] Shiraz Univ Technol, Coll Engn, Lamerd Higher Educ Ctr, Lamerd, Iran
[2] Fasa Univ, Fac Sci, Dept Math, Fasa, Iran
关键词
<italic>S</italic>-act; Monoid; Hopfian; Co-Hopfian; MODULES;
D O I
10.1007/s40995-024-01753-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The main purpose of this work is to investigate of the notions Hopfian (co-Hopfian) acts in which their surjective (injective) endomorphisms are isomorphisms. While we study conditions that are relevant to these classes of acts, their interrelationship with some other concepts for example quasi-injective and Dedekind-finite acts is studied. Using Hopfian and co-Hopfian concepts, we provide several conditions for a quasi-injective act to be Dedekind-finite.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A note on Hopfian and co-Hopfian abelian groups
    Goldsmith, B.
    Gong, K.
    GROUPS AND MODEL THEORY, 2012, 576 : 129 - +
  • [2] Hopfian and co-Hopfian groups
    Deo, S
    Varadarajan, K
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1997, 56 (01) : 17 - 24
  • [3] HOPFIAN AND CO-HOPFIAN SUBSEMIGROUPS AND EXTENSIONS
    Cain, Alan J.
    Maltcev, Victor
    DEMONSTRATIO MATHEMATICA, 2014, 47 (04) : 791 - 804
  • [4] HOPFIAN MODULES AND CO-HOPFIAN MODULES
    XUE, WM
    COMMUNICATIONS IN ALGEBRA, 1995, 23 (04) : 1219 - 1229
  • [5] NOTES ON GENERALIZATIONS OF HOPFIAN AND CO-HOPFIAN MODULES
    El Moussaouy, Abderrahim
    Ziane, M'Hammed
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (01): : 43 - 54
  • [6] Anti hopfian and anti co-hopfian modules
    Varadarajan, K.
    NONCOMMUTATIVE RINGS, GROUP RINGS, DIAGRAM ALGEBRAS AND THEIR APPLICATIONS, 2008, 456 : 205 - 218
  • [7] On co-Hopfian groups
    Endimioni, G
    Robinson, DJS
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2005, 67 (3-4): : 423 - 436
  • [8] ON THE EXISTENCE OF UNCOUNTABLE HOPFIAN AND CO-HOPFIAN ABELIAN GROUPS
    Paolini, Gianluca
    Shelah, Saharon
    ISRAEL JOURNAL OF MATHEMATICS, 2023, 257 (02) : 533 - 560
  • [9] On the existence of uncountable Hopfian and co-Hopfian abelian groups
    Gianluca Paolini
    Saharon Shelah
    Israel Journal of Mathematics, 2023, 257 : 533 - 560
  • [10] On some generalizations of Hopfian and co-Hopfian Abelian groups
    Goldsmith, B.
    Gong, K.
    ACTA MATHEMATICA HUNGARICA, 2013, 139 (04) : 393 - 398