On co-Hopfian groups

被引:0
|
作者
Endimioni, G
Robinson, DJS
机构
[1] Univ Aix Marseille 1, CMI, F-13453 Marseille, France
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2005年 / 67卷 / 3-4期
关键词
co-hopfian group;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A group is called co-hopfian if it is not isomorphic with a proper subgroup. The aim of this paper is to obtain sufficient conditions for a group to be co-hopfian or non-co-hopfian. For example, it is shown that a reduced soluble minimax group which is abelian-by-nilpotent-by-finite, but not nilpotentby-finite, cannot be co-hopfian. This leads to the construction of many finitely generated soluble coherent groups which are not polycyclic. On the other hand, examples of co-hopfian polycyclic groups which are not nilpotent-by-finite are given. In addition it is shown that a soluble-by-finite group satisfying the minimal condition on normal subgroups is co-hopfian.
引用
收藏
页码:423 / 436
页数:14
相关论文
共 50 条
  • [1] Hopfian and co-Hopfian groups
    Deo, S
    Varadarajan, K
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1997, 56 (01) : 17 - 24
  • [2] A note on Hopfian and co-Hopfian abelian groups
    Goldsmith, B.
    Gong, K.
    GROUPS AND MODEL THEORY, 2012, 576 : 129 - +
  • [3] CO-HOPFIAN ABELIAN GROUPS
    Kaigorodov, E., V
    Chedushev, S. M.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2015, (36): : 21 - 33
  • [4] On co-Hopfian nilpotent groups
    Belegradek, I
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 : 805 - 811
  • [5] ON THE EXISTENCE OF UNCOUNTABLE HOPFIAN AND CO-HOPFIAN ABELIAN GROUPS
    Paolini, Gianluca
    Shelah, Saharon
    ISRAEL JOURNAL OF MATHEMATICS, 2023, 257 (02) : 533 - 560
  • [6] On the existence of uncountable Hopfian and co-Hopfian abelian groups
    Gianluca Paolini
    Saharon Shelah
    Israel Journal of Mathematics, 2023, 257 : 533 - 560
  • [7] On some generalizations of Hopfian and co-Hopfian Abelian groups
    Goldsmith, B.
    Gong, K.
    ACTA MATHEMATICA HUNGARICA, 2013, 139 (04) : 393 - 398
  • [8] On super and hereditarily hopfian and co-hopfian Abelian groups
    B. Goldsmith
    K. Gong
    Archiv der Mathematik, 2012, 99 : 1 - 8
  • [9] On some generalizations of Hopfian and co-Hopfian Abelian groups
    B. Goldsmith
    K. Gong
    Acta Mathematica Hungarica, 2013, 139 : 393 - 398
  • [10] On super and hereditarily hopfian and co-hopfian Abelian groups
    Goldsmith, B.
    Gong, K.
    ARCHIV DER MATHEMATIK, 2012, 99 (01) : 1 - 8