Diagnostic analytics for the mixed Poisson INGARCH model with applications

被引:0
|
作者
Dang, Wenjie [1 ]
Zhu, Fukang [1 ]
Xu, Nuo [1 ]
Liu, Shuangzhe [2 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[2] Univ Canberra, Fac Sci & Technol, Canberra, Australia
基金
中国国家自然科学基金;
关键词
Case deletion; EM algorithm; INGACH model; local influence; mixed Poisson; time series of counts; STEPWISE LOCAL INFLUENCE; REGRESSION-MODELS;
D O I
10.1080/02664763.2025.2476658
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In statistical diagnosis and sensitivity analysis, the local influence method plays a crucial role and is sometimes more advantageous than other methods. The mixed Poisson integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) model is built on a flexible family of mixed Poisson distributions. It not only encompasses the negative binomial INGARCH model but also allows for the introduction of the Poisson-inverse Gaussian INGARCH model and the Poisson generalized hyperbolic secant INGARCH model. This paper applies the local influence analysis method to count time series data within the framework of the mixed Poisson INGARCH model. For parameter estimation, the Expectation-Maximization algorithm is utilized. In the context of local influence analysis, two global influence methods (generalized Cook distance and Q-distance) and four perturbations-case weights perturbation, data perturbation, additive perturbation, and scale perturbation-are considered to identify influential points. Finally, the feasibility and effectiveness of the proposed methods are demonstrated through simulations and analysis of a real data set.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] Mixed Poisson approximation in the collective epidemic model
    Lefevre, C
    Utev, S
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 69 (02) : 217 - 246
  • [22] On testing for the number of components in a mixed Poisson model
    Karlis, D
    Xekalaki, E
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1999, 51 (01) : 149 - 162
  • [23] Mixed Poisson approximation in the collective epidemic model
    Stochastic Process their Appl, 2 (217):
  • [24] On approximate likelihood inference in a Poisson mixed model
    Sutradhar, BC
    Qu, ZD
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1998, 26 (01): : 169 - 186
  • [25] On Testing for the Number of Components in a Mixed Poisson Model
    Dimitris Karlis
    Evdokia Xekalaki
    Annals of the Institute of Statistical Mathematics, 1999, 51 : 149 - 162
  • [26] An improvement of the Berry-Esseen inequality with applications to Poisson and mixed Poisson random sums
    Korolev, Victor
    Shevtsova, Irina
    SCANDINAVIAN ACTUARIAL JOURNAL, 2012, (02) : 81 - 105
  • [27] Zero-Inflated INGARCH Using Conditional Poisson and Negative Binomial: Data Application
    Yoon, J. E.
    Hwang, S. Y.
    KOREAN JOURNAL OF APPLIED STATISTICS, 2015, 28 (03) : 583 - 592
  • [28] Network traffic prediction based on INGARCH model
    Kim, Meejoung
    WIRELESS NETWORKS, 2020, 26 (08) : 6189 - 6202
  • [29] Network traffic prediction based on INGARCH model
    Meejoung Kim
    Wireless Networks, 2020, 26 : 6189 - 6202
  • [30] A multivariate Poisson mixture model for marketing applications
    Brijs, T
    Karlis, D
    Swinnen, G
    Vanhoof, K
    Wets, G
    Manchanda, P
    STATISTICA NEERLANDICA, 2004, 58 (03) : 322 - 348