Diagnostic analytics for the mixed Poisson INGARCH model with applications

被引:0
|
作者
Dang, Wenjie [1 ]
Zhu, Fukang [1 ]
Xu, Nuo [1 ]
Liu, Shuangzhe [2 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[2] Univ Canberra, Fac Sci & Technol, Canberra, Australia
基金
中国国家自然科学基金;
关键词
Case deletion; EM algorithm; INGACH model; local influence; mixed Poisson; time series of counts; STEPWISE LOCAL INFLUENCE; REGRESSION-MODELS;
D O I
10.1080/02664763.2025.2476658
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In statistical diagnosis and sensitivity analysis, the local influence method plays a crucial role and is sometimes more advantageous than other methods. The mixed Poisson integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) model is built on a flexible family of mixed Poisson distributions. It not only encompasses the negative binomial INGARCH model but also allows for the introduction of the Poisson-inverse Gaussian INGARCH model and the Poisson generalized hyperbolic secant INGARCH model. This paper applies the local influence analysis method to count time series data within the framework of the mixed Poisson INGARCH model. For parameter estimation, the Expectation-Maximization algorithm is utilized. In the context of local influence analysis, two global influence methods (generalized Cook distance and Q-distance) and four perturbations-case weights perturbation, data perturbation, additive perturbation, and scale perturbation-are considered to identify influential points. Finally, the feasibility and effectiveness of the proposed methods are demonstrated through simulations and analysis of a real data set.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] FLEXIBLE AND ROBUST MIXED POISSON INGARCH MODELS
    Silva, Rodrigo B.
    Barreto-Souza, Wagner
    JOURNAL OF TIME SERIES ANALYSIS, 2019, 40 (05) : 788 - 814
  • [2] A mixed generalized Poisson INAR model with applications
    Huang, Jie
    Zhu, Fukang
    Deng, Dianliang
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (11) : 1851 - 1878
  • [3] Hysteretic Poisson INGARCH model for integer-valued time series
    Truong, Buu-Chau
    Chen, Cathy W. S.
    Sriboonchitta, Songsak
    STATISTICAL MODELLING, 2017, 17 (06) : 401 - 422
  • [4] Robust Estimation for Bivariate Poisson INGARCH Models
    Kim, Byungsoo
    Lee, Sangyeol
    Kim, Dongwon
    ENTROPY, 2021, 23 (03)
  • [5] Modelling Asthma Cases using Count Analysis Approach: Poisson INGARCH and Negative Binomial INGARCH
    Jamaludin, Aaishah Radziah
    Yusof, Fadhilah
    Suhartono
    MATEMATIKA, 2020, 36 (01) : 15 - 30
  • [6] Doubly-Inflated Poisson INGARCH Models for Count Time Series
    Sen, Sumen
    Das, Ishapathik
    Ayoob, Fathima
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2023, 17 (04)
  • [7] A New Mixed Poisson Distribution: Modeling and Applications
    Habibi, Mina
    Asgharzadeh, Akbar
    JOURNAL OF TESTING AND EVALUATION, 2018, 46 (04) : 1728 - 1740
  • [8] A New Quantile Regression Model and Its Diagnostic Analytics for a Weibull Distributed Response with Applications
    Sanchez, Luis
    Leiva, Victor
    Saulo, Helton
    Marchant, Carolina
    Sarabia, Jose M.
    MATHEMATICS, 2021, 9 (21)
  • [9] Asymptotic normality and parameter change test for bivariate Poisson INGARCH models
    Youngmi Lee
    Sangyeol Lee
    Dag Tjøstheim
    TEST, 2018, 27 : 52 - 69
  • [10] Modeling time series of counts with COM-Poisson INGARCH models
    Zhu, Fukang
    MATHEMATICAL AND COMPUTER MODELLING, 2012, 56 (9-10) : 191 - 203