Predicting intermediate-risk prostate cancer using machine learning

被引:0
|
作者
Stojadinovic, Miroslav [1 ]
Stojadinovic, Milorad [2 ]
Jankovic, Slobodan [3 ]
机构
[1] Univ Kragujevac, Fac Med Sci, Svetozara Markov 69, Kragujevac 34000, Serbia
[2] Univ Clin Ctr Serbia, Clin Nephrol, Belgrade, Serbia
[3] Univ Kragujevac, Fac Med Sci, Pharmacol & Toxicol Dept, Kragujevac, Serbia
关键词
Prostate cancer; Prostate biopsy; Diagnosis; Machine learning; Intermediate-risk; RADIATION-THERAPY; STRATIFICATION; DIAGNOSIS;
D O I
10.1007/s11255-024-04342-9
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
PurposesIntermediate-risk prostate cancer (IR PCa) is the most common risk group for localized prostate cancer. This study aimed to develop a machine learning (ML) model that utilizes biopsy predictors to estimate the probability of IR PCa and assess its performance compared to the traditional clinical model.MethodsBetween January 2017 and December 2022, patients with prostate-specific antigen (PSA) values of <= 20 ng/mL underwent transrectal ultrasonography-guided prostate biopsies. Patient's age, PSA, digital rectal exam, prostate volume, PSA density (PSAD), and previous negative biopsy, number of positive cores, Gleason score, and biopsy outcome were recorded. Patients are categorized into no cancer, very low, low-, and intermediate-risk categories. The relationship between the model and IR PCa was investigated using binary generalized linear model (GLM) and assessed its discriminatory ability by calculating the area under the receiver operating characteristic curve (AUC).ResultsAmong 729 patients, PCa was detected in 234 individuals (32.1%), with 120 (16.5%) diagnosed with IR PCa. The AUC for the novel model compared to the clinical model was 0.806 (95% CI: 0.722-0.889) versus 0.669 (95% CI: 0.543-0.790), with a p-value of 0.018. In DCA, the GLM outperformed the clinical model by over 7%, potentially allowing for an additional 44.3% reduction in unnecessary biopsies. The PSAD emerged as the most significant predictor.ConclusionWe developed a GLM utilizing pre-biopsy features to predict IR PCa. The model demonstrated good discrimination and clinical applicability, which could assist urologists in determining the necessity of a prostate biopsy.
引用
收藏
页码:1737 / 1746
页数:10
相关论文
共 50 条
  • [1] Machine learning algorithm to define optimal candidates for active surveillance in intermediate-risk prostate cancer
    Baboudjian, M.
    Breda, A.
    Roumeguere, T.
    Uleri, A.
    Roche, J.
    Touzani, A.
    Lacetera, V
    Beauval, J.
    Diamand, R.
    Simone, G.
    Windisch, O.
    Benamran, D.
    Fourcade, A.
    Fiard, G.
    Roumiguie, M.
    Oderda, M.
    Barret, E.
    Fromont, G.
    Dariane, C.
    Gondran-Tellier, B.
    Ruffion, A.
    Van den Bergh, R.
    Peltier, A.
    Ploussard, G.
    EUROPEAN UROLOGY, 2023, 83
  • [2] Expanding inclusion criteria for active surveillance in intermediate-risk prostate cancer: a machine learning approach
    Michael Baboudjian
    Alberto Breda
    Thierry Roumeguère
    Alessandro Uleri
    Jean-Baptiste Roche
    Alae Touzani
    Vito Lacetera
    Jean-Baptiste Beauval
    Romain Diamand
    Guiseppe Simone
    Olivier Windisch
    Daniel Benamran
    Alexandre Fourcade
    Gaelle Fiard
    Camille Durand-Labrunie
    Mathieu Roumiguié
    Francesco Sanguedolce
    Marco Oderda
    Eric Barret
    Gaëlle Fromont
    Charles Dariane
    Anne-Laure Charvet
    Bastien Gondran-Tellier
    Cyrille Bastide
    Eric Lechevallier
    Joan Palou
    Alain Ruffion
    Roderick C. N. Van Der Bergh
    Alexandre Peltier
    Guillaume Ploussard
    World Journal of Urology, 2023, 41 : 1301 - 1308
  • [3] Expanding inclusion criteria for active surveillance in intermediate-risk prostate cancer: a machine learning approach
    Baboudjian, Michael
    Breda, Alberto
    Roumeguere, Thierry
    Uleri, Alessandro
    Roche, Jean-Baptiste
    Touzani, Alae
    Lacetera, Vito
    Beauval, Jean-Baptiste
    Diamand, Romain
    Simone, Guiseppe
    Windisch, Olivier
    Benamran, Daniel
    Fourcade, Alexandre
    Fiard, Gaelle
    Durand-Labrunie, Camille
    Roumiguie, Mathieu
    Sanguedolce, Francesco
    Oderda, Marco
    Barret, Eric
    Fromont, Gaelle
    Dariane, Charles
    Charvet, Anne-Laure
    Gondran-Tellier, Bastien
    Bastide, Cyrille
    Lechevallier, Eric
    Palou, Joan
    Ruffion, Alain
    Van der Bergh, Roderick C. N.
    Peltier, Alexandre
    Ploussard, Guillaume
    WORLD JOURNAL OF UROLOGY, 2023, 41 (05) : 1301 - 1308
  • [4] Active surveillance in intermediate-risk prostate cancer
    Klotz, Laurence
    BJU INTERNATIONAL, 2020, 125 (03) : 346 - 354
  • [5] Active surveillance for intermediate-risk prostate cancer
    M A Dall'Era
    L Klotz
    Prostate Cancer and Prostatic Diseases, 2017, 20 : 1 - 6
  • [6] Active surveillance for intermediate-risk prostate cancer
    Dall'Era, M. A.
    Klotz, L.
    PROSTATE CANCER AND PROSTATIC DISEASES, 2017, 20 (01) : 1 - 6
  • [7] Intermediate-risk Prostate Cancer: Stratification and Management
    Preisser, Felix
    Cooperberg, Matthew R.
    Crook, Juanita
    Feng, Felix
    Graefen, Markus
    Karakiewicz, Pierre I.
    Klotz, Laurence
    Montironi, Rodolfo
    Nguyen, Paul L.
    D'Amico, Anthony V.
    EUROPEAN UROLOGY ONCOLOGY, 2020, 3 (03): : 270 - 280
  • [8] Active surveillance for intermediate-risk prostate cancer
    Nayan, Madhur
    Carvalho, Filipe L. F.
    Feldman, Adam S.
    WORLD JOURNAL OF UROLOGY, 2022, 40 (01) : 79 - 86
  • [9] Active surveillance for intermediate-risk prostate cancer
    Madhur Nayan
    Filipe L. F. Carvalho
    Adam S. Feldman
    World Journal of Urology, 2022, 40 : 79 - 86
  • [10] Stratification of patients with intermediate-risk prostate cancer
    Jung, Jin-Woo
    Lee, Jung Keun
    Hong, Sung Kyu
    Byun, Seok-Soo
    Lee, Sang Eun
    BJU INTERNATIONAL, 2015, 115 (06) : 907 - 912