Numerical Identification of Boundary Condition for Reaction-Advection-Diffusion Partial Differential Equation

被引:0
|
作者
Alshammari, Bader Saad [1 ]
机构
[1] Northern Border Univ, Coll Sci, Dept Math, Ar Ar, Saudi Arabia
关键词
reaction-advection-diffusion equation; boundary identification; conjugate gradient method; KMF algorithm; spectral element method; CAUCHY-PROBLEM;
D O I
10.28924/2291-8639-22-2024-212
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we consider a reaction-advection-diffusion partial differential equations (PDEs) in a plane domain with missed boundary data. We applied both the KMF algorithm and the conjugate gradient method to reconstruct the missed data by using the spectral element method. Several numerical examples were given illustrating the convergence of the used algorithms.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] State feedback controller design of fractional ordinary differential equations coupled with a fractional reaction-advection-diffusion equation with delay
    Hou, Mimi
    Xi, Xuan-Xuan
    Zhou, Xian-Feng
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2024, 46 (04) : 649 - 665
  • [22] Emergent structures in reaction-advection-diffusion systems on a sphere
    Krause, Andrew L.
    Burton, Abigail M.
    Fadai, Nabil T.
    Van Gorder, Robert A.
    PHYSICAL REVIEW E, 2018, 97 (04)
  • [23] A periodic reaction-advection-diffusion model for a stream population
    Yu, Xiao
    Zhao, Xiao-Qiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (09) : 3037 - 3062
  • [24] Boundary control of coupled reaction-advection-diffusion equations having the same diffusivity parameter
    Pisano, Alessandro
    Baccoli, Antonello
    Orlov, Yury
    Usai, Elio
    IFAC PAPERSONLINE, 2016, 49 (08): : 86 - 91
  • [25] Entire solutions in reaction-advection-diffusion equations in cylinders
    Li, Wan-Tong
    Liu, Nai-Wei
    Wang, Zhi-Cheng
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (05): : 492 - 504
  • [26] SOLUTION OF FRACTIONAL-ORDER REACTION-ADVECTION-DIFFUSION EQUATION ARISING IN POROUS MEDIA
    Biswas, Chetna
    Das, Subir
    Singh, Anup
    Chopra, Manish
    Journal of Automation and Information Sciences, 2023, 26 (01) : 15 - 29
  • [27] Formation of a loop structure in a reaction-advection-diffusion model
    Kobayashi, Y
    Sano, M
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2006, (161): : 236 - 239
  • [28] Boundary Control of Coupled Reaction-Advection-Diffusion Systems With Spatially-Varying Coefficients
    Vazquez, Rafael
    Krstic, Miroslav
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (04) : 2026 - 2033
  • [29] Dynamical Analysis on Traveling Wave of a Reaction-Advection-Diffusion Equation with Double Free Boundaries
    Ji Changqing
    Yang Pan
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2021, 34 (04): : 379 - 392
  • [30] Numerical solution of two-dimensional nonlinear fractional order reaction-advection-diffusion equation by using collocation method
    Singh, Manpal
    Das, S.
    Rajeev
    Craciun, E-M
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2021, 29 (02): : 211 - 230