On the Rates of Pointwise Convergence for Bernstein Polynomials

被引:0
|
作者
Adell, Jose A. [1 ]
Cardenas-Morales, Daniel [2 ]
Lopez-Moreno, Antonio J. [2 ]
机构
[1] Univ Zaragoza, Dept Metodos Estadisticos, Zaragoza 50009, Spain
[2] Univ Jaen, Dept Matemat, Jaen 23071, Spain
关键词
Bernstein polynomials; locally constant functions; exponential rates; binomial random variable; bernstein-Kantorovich type operators; APPROXIMATION; THEOREM;
D O I
10.1007/s00025-025-02397-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f be a real bounded function defined on the interval [0, 1], which is affine on (a,b)subset of[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(a,b)\subset [0,1]$$\end{document}, and let Bnf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_nf$$\end{document} be its associated nth Bernstein polynomial. We prove that, for any x is an element of(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in (a,b)$$\end{document}, |Bnf(x)-f(x)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|B_nf(x)-f(x)|$$\end{document} converges to 0 as n ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document} at an exponential rate of decay. Moreover, we show that this property is no longer true at the boundary of (a, b). For Bernstein-Kantorovich type operators similar properties hold, whenever f is assumed to be constant instead of affine.
引用
收藏
页数:10
相关论文
共 50 条