Dynamics of a film bounded by a pinned contact line

被引:0
|
作者
Eggers, J. [1 ]
Fontelos, M. A. [2 ]
机构
[1] Univ Bristol, Sch Math, Fry Bldg,Woodland Rd, Bristol BS8 1UG, England
[2] UC3M, Inst Ciencias Matemat, CSIC, UAM,UCM, C Serrano 123, Madrid 28006, Spain
关键词
contact lines; thin films; EQUATION;
D O I
10.1017/jfm.2025.185
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We consider the dynamics of a liquid film with a pinned contact line (for example, a drop), as described by the one-dimensional, surface-tension-driven thin-film equation $h_t + (h<^>n h_{xxx})_x = 0$ , where $h(x,t)$ is the thickness of the film. The case $n=3$ corresponds to a film on a solid substrate. We derive an evolution equation for the contact angle $\theta (t)$ , which couples to the shape of the film. Starting from a regular initial condition $h_0(x)$ , we investigate the dynamics of the drop both analytically and numerically, focusing on the contact angle. For short times $t\ll 1$ , and if $n\ne 3$ , the contact angle changes according to a power law $\displaystyle t<^>{\frac {n-2}{4-n}}$ . In the critical case $n=3$ , the dynamics become non-local, and $\dot {\theta }$ is now of order $\displaystyle {\rm{e}}<^>{-3/(2t<^>{1/3})}$ . This implies that, for $n=3$ , the standard contact line problem with prescribed contact angle is ill posed. In the long time limit, the solution relaxes exponentially towards equilibrium.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Tear Film Dynamics on Soft Contact Lenses
    Szczesna-Iskander, Dorota H.
    Iskander, D. Robert
    OPTOMETRY AND VISION SCIENCE, 2014, 91 (12) : 1406 - 1411
  • [32] Dynamics of pinned interfaces with inertia
    Kayalar, Ö
    Erzan, A
    PHYSICAL REVIEW E, 1999, 60 (06): : 7600 - 7603
  • [33] Dynamics of a pinned magnetic vortex
    Compton, R. L.
    Crowell, P. A.
    PHYSICAL REVIEW LETTERS, 2006, 97 (13)
  • [34] Dynamics of strongly pinned vortices
    Scheidl, S.
    Feinberg, D.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 1994, 235-40 : 3109 - 3110
  • [35] Contact line dynamics in drop coalescence and spreading
    Narhe, R
    Beysens, D
    Nikolayev, VS
    LANGMUIR, 2004, 20 (04) : 1213 - 1221
  • [36] On contact-line dynamics with mass transfer
    Oliver, J. M.
    Whiteley, J. P.
    Saxton, M. A.
    Vella, D.
    Zubkov, V. S.
    King, J. R.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2015, 26 : 671 - 719
  • [37] Receding contact line dynamics on superhydrophobic surfaces
    Betti, Lorenzo
    Campos, Jordy Queiros
    Lechantre, Amandine
    Cailly-Brandstater, Lea
    Nouma, Sarra
    Fresnais, Jerome
    Barthel, Etienne
    Bouret, Yann
    Noblin, Xavier
    Cohen, Celine
    PHYSICAL REVIEW FLUIDS, 2025, 10 (02):
  • [38] Universal contact-line dynamics at the nanoscale
    Rivetti, Marco
    Salez, Thomas
    Benzaquen, Michael
    Raphael, Elie
    Baeumchen, Oliver
    SOFT MATTER, 2015, 11 (48) : 9247 - 9253
  • [39] Critical dynamics of contact-line motion
    Kumar, S
    Reich, DH
    Robbins, MO
    PHYSICAL REVIEW E, 1995, 52 (06) : R5776 - R5779
  • [40] Front dynamics and fingering of a driven contact line
    Veretennikov, I
    Indeikina, A
    Chang, HC
    JOURNAL OF FLUID MECHANICS, 1998, 373 : 81 - 110