Finding influential nodes via graph embedding and hybrid centrality in complex networks

被引:0
|
作者
Ullah, Aman [1 ,2 ]
Meng, Yahui [1 ]
机构
[1] Guangdong Univ Petrochem Technol, Sch Sci, Maoming 525000, Guangdong, Peoples R China
[2] Guangdong Univ Petrochem Technol, Sch Comp Sci, Maoming 525000, Guangdong, Peoples R China
关键词
Influential nodes; Graph embedding; Centrality; Social complex networks; SPREADERS;
D O I
10.1016/j.chaos.2025.116151
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Finding influential nodes is essential for understanding the structure of complex networks and optimizing the dissemination of critical information. The key challenge lies in determining which nodes hold the most significance and how to identify and select a group of disseminators to maximize their influence. Therefore, researchers have proposed various approaches and centrality measures, each offering unique perspectives based on the network's topology. However, existing methods encounter inherent issues due to their sole consideration of node topology information. They also overlook the interconnectedness between nodes during the node filtering process, leading to imprecise evaluation results and limitations in terms of spread scale. In this paper, we introduce a novel scheme to tackle this problem in the context of social complex networks, termed graph embedding-based hybrid centrality (GEHC). Our proposed GEHC scheme starts by employing the DeepWalk graph embedding method to project the high-dimensional complex graph into a simpler, low-dimensional vector space. This mapping enables efficient calculation of the Euclidean distance between local pairs of nodes, allowing us to capture the proximity of nodes accurately. To further enhance the identification of influential nodes, we integrate network topology information and hybrid centrality indices. To evaluate the performance of our approach, we conduct extensive experiments on real-life networks using standard evaluation metrics. Experimental results on real-world networks demonstrate that our proposed scheme achieves a Kendall rank correlation coefficient close to 0.9, reflecting a strong correlation with the outcomes of the susceptible- infected-recovered model and validating its effectiveness in identifying influential nodes. The experimental results showcase the superiority of our approach inaccurately identifying nodes with high influence, surpassing the performance of traditional and recent methods in complex networks.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Identifying influential spreaders in complex networks based on network embedding and node local centrality
    Yang, Xu-Hua
    Xiong, Zhen
    Ma, Fangnan
    Chen, Xiaoze
    Ruan, Zhongyuan
    Jiang, Peng
    Xu, Xinli
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 573
  • [22] Identifying influential nodes based on graph signal processing in complex networks
    Jia, Zhao
    Li, Yu
    Li Jing-Ru
    Peng, Zhou
    CHINESE PHYSICS B, 2015, 24 (05)
  • [23] Identifying the influential nodes in complex social networks using centrality-based approach
    Ishfaq, Umar
    Khan, Hikmat Ullah
    Iqbal, Saqib
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (10) : 9376 - 9392
  • [24] WSLC: Weighted semi-local centrality to identify influential nodes in complex networks
    Wang, Xiaofeng
    Othman, Marini
    Dewi, Deshinta Arrova
    Wang, Yonghong
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (01)
  • [25] Influential Nodes Identification in Complex Networks via Information Entropy
    Guo, Chungu
    Yang, Liangwei
    Chen, Xiao
    Chen, Duanbing
    Gao, Hui
    Ma, Jing
    ENTROPY, 2020, 22 (02)
  • [26] Finding Influential Nodes in Complex Networks Using Nearest Neighborhood Trust Value
    Hajarathaiah, Koduru
    Enduri, Murali Krishna
    Anamalamudi, Satish
    COMPLEX NETWORKS & THEIR APPLICATIONS X, VOL 2, 2022, 1016 : 253 - 264
  • [27] Identifying influential nodes in complex networks: a semi-local centrality measure based on augmented graph and average shortest path theory
    Han-huai, Pan
    Lin-wei, Wang
    Hao, Liu
    Abdollahi, Mohammadjavad
    TELECOMMUNICATION SYSTEMS, 2025, 88 (01)
  • [28] BGN: Identifying Influential Nodes in Complex Networks via Backward Generating Networks
    Lin, Zhiwei
    Ye, Fanghua
    Chen, Chuan
    Zheng, Zibin
    IEEE ACCESS, 2018, 6 : 59949 - 59962
  • [29] A new Centrality Measure for Identifying Influential Nodes in Social Networks
    Rhouma, Delel
    Ben Romdhane, Lotfi
    TENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2017), 2018, 10696
  • [30] A modified efficiency centrality to identify influential nodes in weighted networks
    Yunchuan Wang
    Shasha Wang
    Yong Deng
    Pramana, 2019, 92