This paper reports an experimental study on the effects of extreme temperature on human bronchial epithelial (HBE) cells encapsulated in 3D printed samples. Well plates of the 3D printed samples were exposed to three levels of temperature (37 degrees C, 45 degrees C, and 55 degrees C, respectively) for a duration of 10 min. Cells' responses, specifically cell viability and oxidative stress, were quantified using Hoechst 33342, Sytox, and Mitosox stains, with intensity measurements obtained via a plate reader. In addition, cell viability was assessed through microscopic imaging of the 3D printed samples. Experimental results demonstrated that the temperature increase from 37 degrees C to 55 degrees C significantly reduced nuclear integrity as observed through Hoechst 33342 intensity, while increased Sytox intensity reflected a higher degree of cell death. Furthermore, cells exposed to 45 degrees C and 55 degrees C exhibited decreased cell viability and elevated mitochondrial oxidative stress. These findings offer valuable insights into the effects of extreme temperature on HBE cells, establishing a foundation for future research into how respiratory tissues respond to thermal stress. This research can potentially advance the knowledge regarding effects of heat exposure on the respiratory system.