Tensor-Train networks for learning predictive modeling of multidimensional data

被引:0
|
作者
da Costa, Nazareth [1 ]
Attux, Romis [2 ]
Cichocki, Andrzej [3 ,4 ]
Romano, Joao M. T. [2 ]
机构
[1] TMC Business Consulting & Serv, Eindhoven, Netherlands
[2] Univ Campinas UNICAMP, DSPCom, FEEC, Campinas, Brazil
[3] Polish Acad Sci, Syst Res Inst, Warsaw, Poland
[4] RikenAIP, Tensor Learning Lab, Tokyo, Japan
基金
巴西圣保罗研究基金会;
关键词
Tensor-Train network; Multilinear regression model; Multilayer perceptron; Neural networks; Time-series forecasting; Supervised learning; NEURAL-NETWORKS; REGULARIZATION; OPTIMIZATION; SELECTION; REGRESSION; ALGORITHM; MACHINE; MATRIX; GSVD;
D O I
10.1016/j.neucom.2025.130037
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we firstly apply Tensor-Train (TT) networks to construct a compact representation of the classical Multilayer Perceptron, representing a reduction of up to 95% of the coefficients. A comparative analysis between tensor model and standard multilayer neural networks is also carried out in the context of prediction of the Mackey-Glass noisy chaotic time series and NASDAQ index. We show that the weights of a multidimensional regression model can be learned by means of TT network and the optimization of TT weights is more robust to the impact of coefficient initialization and hyper-parameter setting. Furthermore, an efficient algorithm based on alternating least squares has been proposed for approximating the weights in TT format with a reduction of computational calculus, providing a much faster convergence than the well-known adaptive learning-method algorithms, widely applied for optimizing neural networks.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Tensor-Train Numerical Integration of Multivariate Functions with Singularities
    L. I. Vysotsky
    A. V. Smirnov
    E. E. Tyrtyshnikov
    Lobachevskii Journal of Mathematics, 2021, 42 : 1608 - 1621
  • [42] Learning a Low Tensor-Train Rank Representation for Hyperspectral Image Super-Resolution
    Dian, Renwei
    Li, Shutao
    Fang, Leyuan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (09) : 2672 - 2683
  • [43] Tensor-train methods for sequential state and parameter learning in state-space models
    Zhao, Yiran
    Cui, Tiangang
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 51
  • [44] DYNAMICAL APPROXIMATION BY HIERARCHICAL TUCKER AND TENSOR-TRAIN TENSORS
    Lubich, Christian
    Rohwedder, Thorsten
    Schneider, Reinhold
    Vandereycken, Bart
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (02) : 470 - 494
  • [45] ADTT: A Highly Efficient Distributed Tensor-Train Decomposition Method for IIoT Big Data
    Wang, Xiaokang
    Yang, Laurence T.
    Wang, Yihao
    Ren, Lei
    Deen, M. Jamal
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (03) : 1573 - 1582
  • [46] TENSOR ENSEMBLE LEARNING FOR MULTIDIMENSIONAL DATA
    Kisil, Ilia
    Moniri, Ahmad
    Mandic, Danilo P.
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 1358 - 1362
  • [47] Convolutional Auto-Encoder with Tensor-Train Factorization
    Sharma, Manish
    Markopoulos, Panos P.
    Saber, Eli
    Asif, M. Salman
    Prater-Bennette, Ashley
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 198 - 206
  • [48] Tensor-Train Numerical Integration of Multivariate Functions with Singularities
    Vysotsky, L., I
    Smirnov, A., V
    Tyrtyshnikov, E. E.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (07) : 1608 - 1621
  • [49] Outlier detection toward high-dimensional industrial data using extreme tensor-train learning machine with compression
    Deng, Xiaowu
    Shi, Yuanquan
    Yao, Dunhong
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2023, 35 (06)
  • [50] High-Performance Tensor-Train Primitives Using GPU Tensor Cores
    Liu, Xiao-Yang
    Hong, Hao
    Zhang, Zeliang
    Tong, Weiqin
    Kossaifi, Jean
    Wang, Xiaodong
    Walid, Anwar
    IEEE TRANSACTIONS ON COMPUTERS, 2024, 73 (11) : 2634 - 2648