Tensor-Train networks for learning predictive modeling of multidimensional data

被引:0
|
作者
da Costa, Nazareth [1 ]
Attux, Romis [2 ]
Cichocki, Andrzej [3 ,4 ]
Romano, Joao M. T. [2 ]
机构
[1] TMC Business Consulting & Serv, Eindhoven, Netherlands
[2] Univ Campinas UNICAMP, DSPCom, FEEC, Campinas, Brazil
[3] Polish Acad Sci, Syst Res Inst, Warsaw, Poland
[4] RikenAIP, Tensor Learning Lab, Tokyo, Japan
基金
巴西圣保罗研究基金会;
关键词
Tensor-Train network; Multilinear regression model; Multilayer perceptron; Neural networks; Time-series forecasting; Supervised learning; NEURAL-NETWORKS; REGULARIZATION; OPTIMIZATION; SELECTION; REGRESSION; ALGORITHM; MACHINE; MATRIX; GSVD;
D O I
10.1016/j.neucom.2025.130037
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we firstly apply Tensor-Train (TT) networks to construct a compact representation of the classical Multilayer Perceptron, representing a reduction of up to 95% of the coefficients. A comparative analysis between tensor model and standard multilayer neural networks is also carried out in the context of prediction of the Mackey-Glass noisy chaotic time series and NASDAQ index. We show that the weights of a multidimensional regression model can be learned by means of TT network and the optimization of TT weights is more robust to the impact of coefficient initialization and hyper-parameter setting. Furthermore, an efficient algorithm based on alternating least squares has been proposed for approximating the weights in TT format with a reduction of computational calculus, providing a much faster convergence than the well-known adaptive learning-method algorithms, widely applied for optimizing neural networks.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Tensor-Train Kernel Learning for Gaussian Processes
    Kirstein, Max
    Sommer, David
    Eigel, Martin
    CONFORMAL AND PROBABILISTIC PREDICTION WITH APPLICATIONS, VOL 179, 2022, 179
  • [2] TENSOR-TRAIN DECOMPOSITION
    Oseledets, I. V.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05): : 2295 - 2317
  • [3] Tensor-Train Recurrent Neural Networks for Video Classification
    Yang, Yinchong
    Krompass, Denis
    Tresp, Volker
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [4] Functional Tensor-Train Chebyshev Method for Multidimensional Quantum Dynamics Simulations
    Soley, Micheline B.
    Bergold, Paul
    Gorodetsky, Alex A.
    Batista, Victor S.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (01) : 25 - 36
  • [5] Robust Tensor Tracking With Missing Data Under Tensor-Train Format
    Le Trung Thanh
    Abed-Meraim, Karim
    Nguyen Linh Trung
    Hafiane, Adel
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 832 - 836
  • [6] Tensor-Train Discriminant Analysis
    Sofuoglu, Seyyid Emre
    Aviyente, Selin
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3422 - 3426
  • [7] SPECTRAL TENSOR-TRAIN DECOMPOSITION
    Bigoni, Daniele
    Engsig-Karup, Allan P.
    Marzouk, Youssef M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (04): : A2405 - A2439
  • [8] A Tensor-Train Deep Computation Model for Industry Informatics Big Data Feature Learning
    Zhang, Qingchen
    Yang, Laurence T.
    Chen, Zhikui
    Li, Peng
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2018, 14 (07) : 3197 - 3204
  • [9] Tensor-train compression of discrete element method simulation data
    De, Saibal
    Corona, Eduardo
    Jayakumar, Paramsothy
    Veerapaneni, Shravan
    JOURNAL OF TERRAMECHANICS, 2024, 113
  • [10] Tensor-Train Decomposition in the Presence of Interval-Valued Data
    Di Mauro, Francesco
    Candan, K. Selcuk
    Sapino, Maria Luisa
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (04) : 4267 - 4280