SCM-YOLO for Lightweight Small Object Detection in Remote Sensing Images

被引:0
|
作者
Qiang, Hao [1 ,2 ]
Hao, Wei [1 ,2 ]
Xie, Meilin [1 ,2 ]
Tang, Qiang [1 ,2 ]
Shi, Heng [1 ,2 ]
Zhao, Yixin [1 ,2 ]
Han, Xiaoteng [1 ,2 ]
机构
[1] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
small object detection; remote sensing image; spatial local information; feature fusion; attention mechanism;
D O I
10.3390/rs17020249
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Currently, small object detection in complex remote sensing environments faces significant challenges. The detectors designed for this scenario have limitations, such as insufficient extraction of spatial local information, inflexible feature fusion, and limited global feature acquisition capability. In addition, there is a need to balance performance and complexity when improving the model. To address these issues, this paper proposes an efficient and lightweight SCM-YOLO detector improved from YOLOv5 with spatial local information enhancement, multi-scale feature adaptive fusion, and global sensing capabilities. The SCM-YOLO detector consists of three innovative and lightweight modules: the Space Interleaving in Depth (SPID) module, the Cross Block and Channel Reweight Concat (CBCC) module, and the Mixed Local Channel Attention Global Integration (MAGI) module. These three modules effectively improve the performance of the detector from three aspects: feature extraction, feature fusion, and feature perception. The ability of SCM-YOLO to detect small objects in complex remote sensing environments has been significantly improved while maintaining its lightweight characteristics. The effectiveness and lightweight characteristics of SCM-YOLO are verified through comparison experiments with AI-TOD and SIMD public remote sensing small object detection datasets. In addition, we validate the effectiveness of the three modules, SPID, CBCC, and MAGI, through ablation experiments. The comparison experiments on the AI-TOD dataset show that the mAP50 and mAP50-95 metrics of SCM-YOLO reach 64.053% and 27.283%, respectively, which are significantly better than other models with the same parameter size.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] A small attentional YOLO model for landslide detection from satellite remote sensing images
    Libo Cheng
    Jia Li
    Ping Duan
    Mingguo Wang
    Landslides, 2021, 18 : 2751 - 2765
  • [32] A small attentional YOLO model for landslide detection from satellite remote sensing images
    Cheng, Libo
    Li, Jia
    Duan, Ping
    Wang, Mingguo
    LANDSLIDES, 2021, 18 (08) : 2751 - 2765
  • [33] Remote sensing object detection based on YOLO and embedded systems
    Lin Yu
    Dong Zhenghong
    Xia Lurui
    Wang Junwei
    AOPC 2020: DISPLAY TECHNOLOGY; PHOTONIC MEMS, THZ MEMS, AND METAMATERIALS; AND AI IN OPTICS AND PHOTONICS, 2020, 11565
  • [34] Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation
    Li, Gongyang
    Liu, Zhi
    Bai, Zhen
    Lin, Weisi
    Ling, Haibin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [35] MEANet: An effective and lightweight solution for salient object detection in optical remote sensing images
    Liang, Bocheng
    Luo, Huilan
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [36] FEFN: Feature Enhancement Feedforward Network for Lightweight Object Detection in Remote Sensing Images
    Wu, Jing
    Ni, Rixiang
    Chen, Zhenhua
    Huang, Feng
    Chen, Liqiong
    REMOTE SENSING, 2024, 16 (13)
  • [37] Speed-Oriented Lightweight Salient Object Detection in Optical Remote Sensing Images
    Li, Zhaoyang
    Miao, Yinxiao
    Li, Xiongwei
    Li, Wenrui
    Cao, Jie
    Hao, Qun
    Li, Dongxing
    Sheng, Yunlong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [38] Lightweight Progressive Fusion Calibration Network for Rotated Object Detection in Remote Sensing Images
    Liu, Jing
    Jing, Donglin
    Cao, Yanyan
    Wang, Ying
    Guo, Chaoping
    Shi, Peijun
    Zhang, Haijing
    ELECTRONICS, 2024, 13 (16)
  • [39] Lightweight Object Detection Networks for UAV Aerial Images Based on YOLO
    Yanshan LI
    Jiarong WANG
    Kunhua ZHANG
    Jiawei YI
    Miaomiao WEI
    Lirong ZHENG
    Weixin XIE
    Chinese Journal of Electronics, 2024, 33 (04) : 997 - 1009
  • [40] Lightweight Object Detection Networks for UAV Aerial Images Based on YOLO
    Li, Yanshan
    Wang, Jiarong
    Zhang, Kunhua
    Yi, Jiawei
    Wei, Miaomiao
    Zheng, Lirong
    Xie, Weixin
    CHINESE JOURNAL OF ELECTRONICS, 2024, 33 (04) : 997 - 1009