Existence and Stability of Standing Waves for a Class of Inhomogeneous Nonlinear Schro<spacing diaeresis>dinger Equations with L2-Critical Nonlinearity

被引:0
|
作者
Liu, Xinyan [1 ]
Li, Xiaoguang [1 ]
Zhang, Li [1 ]
机构
[1] Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
基金
中国国家自然科学基金;
关键词
L2-Critical nonlinearity; bounded potentials; standing waves; existence; orbital stability; SCHRODINGER-EQUATIONS; ORBITAL STABILITY;
D O I
10.1007/s00025-024-02328-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence and orbital stability of standing waves for a class of Schrodinger equations with L-2-critical nonlinearity. By considering a minimization problem with bounded potentials, the existence of standing waves is shown by means of the concentration-compactness argument. Moreover, we establish the orbital stability of standing waves.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Conformable Sumudu Transform Based Adomian Decomposition Method for Linear and Nonlinear Fractional-Order Schro<spacing diaeresis>dinger Equations
    Liaqat, Muhammad Imran
    Aljarrah, Hussam
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (04): : 3464 - 3491
  • [42] LIE SYMMETRY ANALYSIS AND CONSERVATION LAWS FOR (2+1)-DIMENSIONAL COUPLED TIME-FRACTIONAL NONLINEAR SCHRO<spacing diaeresis>DINGER EQUATIONS
    Wang, Fang
    Feng, Xiufang
    He, Shangqin
    Wang, Panpan
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (03):
  • [43] SOLVING A TYPE OF NONLINEAR SCHRO<spacing diaeresis>DINGER EQUATIONS USING A PHYSICALLY INFORMED NEURAL NETWORK AND TUNING THE ADAPTIVE ACTIVATION FUNCTION
    Liu, S.
    Luan, Z.
    Kabanikhin, S. I.
    Strijhak, S. V.
    Zhang, Y.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 15 (02): : 203 - 227
  • [44] Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials
    J. Zhang
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2000, 51 : 498 - 503
  • [45] Instability of Standing Waves for the Nonlinear Schrodinger-Poisson Equation in the L2-Critical Case
    Feng, Binhua
    Chen, Ruipeng
    Wang, Qingxuan
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2020, 32 (03) : 1357 - 1370
  • [46] INVARIANTS-PRESERVING DU FORT-FRANKEL SCHEMES AND THEIR ANALYSES FOR NONLINEAR SCHRO<spacing diaeresis>DINGER EQUATIONS WITH WAVE OPERATOR
    Deng, Dingwen
    Li, Zhijun
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024, 42 (03): : 814 - 850
  • [47] On the nonlinear Schro<spacing diaeresis>dinger equation with critical source term: global well-posedness, scattering and finite time blowup
    Almuthaybiri, Saleh
    Ghanmi, Radhia
    Saanouni, Tarek
    AIMS MATHEMATICS, 2024, 9 (11): : 30230 - 30262
  • [48] Existence and stability of standing waves for nonlinear fractional Schroumldinger equations
    Guo, Boling
    Huang, Daiwen
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (08)
  • [49] AN EXISTENCE AND STABILITY RESULT FOR STANDING WAVES OF NONLINEAR SCHRODINGER EQUATIONS
    Jeanjean, Louis
    Le Coz, Stefan
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2006, 11 (07) : 813 - 840
  • [50] Existence of stable standing waves for the critical fractional Schrodinger equation with an inhomogeneous combined nonlinearity
    Peng, Congming
    Wang, Kai
    Ma, Caochuan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (01) : 417 - 434