Improved reproducibility of regional longitudinal strain in echocardiography by deep learning

被引:0
|
作者
Nyberg, J. [1 ]
Ostvik, A. [1 ]
Salte, I. M. [2 ]
Olaisen, S. [1 ]
Karlsen, S. [3 ]
Dahlslett, T. [3 ]
Smistad, E. [1 ]
Eriksen-Volnes, T. [4 ]
Brunvand, H. [3 ]
Edvardsen, T. [5 ]
Haugaa, K. H. [5 ]
Lovstakken, L. [1 ]
Dalen, H. [1 ]
Grenne, B. [1 ]
机构
[1] Norwegian Univ Sci & Technol, Trondheim, Norway
[2] Akershus Univ Hosp, Dept Radiol, Oslo, Norway
[3] Sorlandet Hosp, Dept Med, Arendal, Norway
[4] St Olavs Hosp, Clin Cardiol, Trondheim, Norway
[5] Oslo Univ Hosp, Dept Cardiol, Rikshosp, Oslo, Norway
关键词
D O I
10.1093/eurheartj/ehae666.031
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Deep Learning for Segmentation of the Left Ventricle in Echocardiography
    Ferraz, Sofia
    Coimbra, Miguel
    Pedrosa, Joao
    2023 IEEE 7TH PORTUGUESE MEETING ON BIOENGINEERING, ENBENG, 2023, : 159 - 162
  • [42] Radiomics in Echocardiography: Deep Learning and Echocardiographic Analysis
    Kenya Kusunose
    Current Cardiology Reports, 2020, 22
  • [43] Application Status and Prospect of Deep Learning in Echocardiography
    Qi, Qi
    Han, Xiaoxiang
    Liu, Yiman
    IEEE ACCESS, 2024, 12 : 83405 - 83416
  • [44] Deep learning for automatic calcium detection in echocardiography
    Elvas, Luis B.
    Gomes, Sara
    Ferreira, Joao C.
    Rosario, Luis Bras
    Brandao, Tomas
    BIODATA MINING, 2024, 17 (01):
  • [45] Validation of Longitudinal Peak Systolic Strain by Speckle Tracking Echocardiography With Visual Assessment and Myocardial Perfusion SPECT in Patients With Regional Asynergy
    Kusunose, Kenya
    Yamada, Hirotsugu
    Nishio, Susumu
    Mizuguchi, Yukio
    Choraku, Masahito
    Maeda, Yasuhiro
    Hosokawa, Shinobu
    Yamazaki, Nobuo
    Tomita, Noriko
    Niki, Toshiyuki
    Yamaguchi, Koji
    Koshiba, Kunihiko
    Soeki, Takeshi
    Wakatsuki, Tetsuzo
    Akaike, Masashi
    Sata, Masataka
    CIRCULATION JOURNAL, 2011, 75 (01) : 141 - 147
  • [46] Variability and reproducibility in deep learning for medical image segmentation
    Félix Renard
    Soulaimane Guedria
    Noel De Palma
    Nicolas Vuillerme
    Scientific Reports, 10
  • [47] Variability and reproducibility in deep learning for medical image segmentation
    Renard, Felix
    Guedria, Soulaimane
    De Palma, Noel
    Vuillerme, Nicolas
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [48] Reproducibility guideline for deep learning research in medical imaging
    Simko, Attila
    Garpebring, Anders
    Jonsson, Joakim
    Nyholm, Tufve
    Lofstedt, Tommy
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S4424 - S4425
  • [49] REPRODUCIBILITY OF TUMOR SEGMENTATION OUTCOMES WITH A DEEP LEARNING MODEL
    des Ligneris, Morgane
    Bonnet, Axel
    Chatelain, Yohan
    Glatard, Tristan
    Sdika, Michael
    El Vila, Ga Spacing Diaeresis
    Wargnier-Dauchelle, Valentine
    Pop, Sorina
    Frindel, Carole
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [50] Reproducibility of the Methods in Medical Imaging with Deep Learning.
    Simko, Attila
    Garpebring, Anders
    Jonsson, Joakim
    Nyholm, Tufve
    Lofstedt, Tommy
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 227, 2023, 227 : 95 - 106