Hardware Trojan Key-Corruption Detection with Automated Neural Architecture Search

被引:0
|
作者
Mezzarapa, Franco [1 ]
Goodrich, Jenna [1 ]
Robins, Andey [1 ]
Borowczak, Mike [1 ]
机构
[1] Univ Cent Florida, Orlando, FL 32816 USA
来源
关键词
Side Channels; Hardware Trojan; Power Analysis; Deep Neural Network;
D O I
10.1007/978-3-031-81900-1_11
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work presents a model hardware trojan which intermittently is capable of corrupting an encryption operation occurring on a device. It asks whether this trojan can be detected via power-based, side-channel attacks only instrumenting the encryption itself, not the control flow of the trojan itself. By applying Automated Machine Learning techniques to search neural architecture, a classification of corrupted encryption operations is able to completely identify whether the operation corresponded with a corrupted operation or not. Through a number of experiments, we demonstrate this fact holds regardless of variable or constant plaintext, rotating encryption keys, or even with different corrupted keys.
引用
收藏
页码:175 / 185
页数:11
相关论文
共 50 条
  • [21] A unioned graph neural network based hardware Trojan node detection
    Pan, Weitao
    Dong, Meng
    Wen, Cong
    Liu, Hongjin
    Zhang, Shaolin
    Shi, Bo
    Di, Zhixiong
    Qiu, Zhiliang
    Gao, Yiming
    Zheng, Ling
    IEICE ELECTRONICS EXPRESS, 2022, 20 (13):
  • [22] A unioned graph neural network based hardware Trojan node detection
    Pan, Weitao
    Dong, Meng
    Wen, Cong
    Liu, Hongjin
    Zhang, Shaolin
    Shi, Bo
    Di, Zhixiong
    Qiu, Zhiliang
    Gao, Yiming
    Zheng, Ling
    IEICE ELECTRONICS EXPRESS, 2023, 20 (13):
  • [23] Combining Thermal Maps With Inception Neural Networks for Hardware Trojan Detection
    Wen, Yiming
    Yu, Weize
    IEEE EMBEDDED SYSTEMS LETTERS, 2021, 13 (02) : 45 - 48
  • [24] Neural Feature Search: A Neural Architecture for Automated Feature Engineering
    Chen, Xiangning
    Lin, Qingwei
    Luo, Chuan
    Li, Xudong
    Zhang, Hongyu
    Xu, Yong
    Dang, Yingnong
    Sui, Kaixin
    Zhang, Xu
    Qiao, Bo
    Zhang, Weiyi
    Wu, Wei
    Chintalapati, Murali
    Zhang, Dongmei
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 71 - 80
  • [25] Hardware Trojan Detection and Mitigation in NoC using Key authentication and Obfuscation Techniques
    Thejaswini, P.
    Vivekananda, G.
    Anu, H.
    Priya, R.
    Prasad, B. S. Krishna
    Nischay, M.
    EMITTER-INTERNATIONAL JOURNAL OF ENGINEERING TECHNOLOGY, 2022, 10 (02) : 370 - 388
  • [26] Neural architecture search for resource constrained hardware devices: A survey
    Yang, Yongjia
    Zhan, Jinyu
    Jiang, Wei
    Jiang, Yucheng
    Yu, Antai
    IET CYBER-PHYSICAL SYSTEMS: THEORY & APPLICATIONS, 2023, 8 (03) : 149 - 159
  • [27] Hardware-Aware Neural Architecture Search: Survey and Taxonomy
    Benmeziane, Hadjer
    El Maghraoui, Kaoutar
    Ouarnoughi, Hamza
    Niar, Smail
    Wistuba, Martin
    Wang, Naigang
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 4322 - 4329
  • [28] Evolution of Hardware-Aware Neural Architecture Search on the Edge
    Richey, Blake
    Clay, Mitchell
    Grecos, Christos
    Shirvaikar, Mukul
    REAL-TIME IMAGE PROCESSING AND DEEP LEARNING 2023, 2023, 12528
  • [29] Automated Deep Learning: Neural Architecture Search Is Not the End
    Dong, Xuanyi
    Kedziora, David Jacob
    Musial, Katarzyna
    Gabrys, Bogdan
    FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2024, 17 (05): : 767 - 920
  • [30] Hardware Trojan Detection Based on Circuit Sequence Features with GRU Neural Network
    Li, Zhenghao
    Zhang, Yang
    Hu, Xing
    Li, Shaoqing
    Liang, Bin
    Proceedings - IEEE Symposium on Computers and Communications, 2024,