Ulam-Hyers and Generalized Ulam-Hyers Stability of Fractional Differential Equations with Deviating Arguments

被引:0
|
作者
Dilna, Natalia [1 ]
Fekete, Gusztav [2 ]
Langerova, Martina [1 ,3 ]
Toth, Balazs [4 ]
机构
[1] Slovak Acad Sci, Math Inst, Bratislava 81473, Slovakia
[2] Szecheny Istvan Univ, AUDI Hungaria Fac Vehicle Engn, Dept Mat Sci & Technol, H-9026 Gyor, Hungary
[3] Slovak Univ Technol Bratislava, Inst Informat Engn Automat & Math, Bratislava 81237, Slovakia
[4] Univ Miskolc, Inst Appl Mech, H-3515 Miskolc, Hungary
关键词
Caputo derivative; Krasnoselskii's fixed point theorem; solvability; UH stability; GUH stability; EXISTENCE;
D O I
10.3390/math12213418
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the initial value problem for the fractional differential equation with multiple deviating arguments. By using Krasnoselskii's fixed point theorem, the conditions of solvability of the problem are obtained. Furthermore, we establish Ulam-Hyers and generalized Ulam-Hyers stability of the fractional functional differential problem. Finally, two examples are presented to illustrate our results, one is with a pantograph-type equation and the other is numerical.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Existence and β-Ulam-Hyers stability for a class of fractional differential equations with non-instantaneous impulses
    Yu, Xiulan
    ADVANCES IN DIFFERENCE EQUATIONS, 2015, : 1 - 13
  • [42] The existence and Ulam-Hyers stability results for A-Hilfer fractional integrodifferential equations
    Abdo, Mohammed S.
    Thabet, Sabri T. M.
    Ahmad, Bashir
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2020, 11 (04) : 1757 - 1780
  • [43] Elementary remarks on Ulam-Hyers stability of linear functional equations
    Forti, Gian-Luigi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (01) : 109 - 118
  • [44] Various generalized Ulam-Hyers stabilities of a nonic functional equations
    Rassias, John M.
    Arunkumar, M.
    Sathya, E.
    Namachivayam, T.
    TBILISI MATHEMATICAL JOURNAL, 2016, 9 (01): : 159 - 196
  • [45] On ψ-quantum fractional operators: Existence, uniqueness and Ulam-Hyers stability
    Limpanukorn, Norravich
    Ahmed, Idris
    Ibrahim, Muhammad Jamilu
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2024, 42 (02): : 313 - 320
  • [46] Ulam-Hyers stability of caputo type fuzzy fractional differential equations with time-delays
    Wang, Xue
    Luo, Danfeng
    Zhu, Quanxin
    CHAOS SOLITONS & FRACTALS, 2022, 156
  • [47] Ulam-Hyers stability of Caputo-type fractional fuzzy stochastic differential equations with delay
    Luo, Danfeng
    Wang, Xue
    Caraballo, Tomas
    Zhu, Quanxin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 121
  • [48] Existence and β-Ulam-Hyers stability for a class of fractional differential equations with non-instantaneous impulses
    Xiulan Yu
    Advances in Difference Equations, 2015
  • [49] Existence and Ulam-Hyers stability results of a coupled system of ψ-Hilfer sequential fractional differential equations
    Almalahi, Mohammed A.
    Abdo, Mohammed S.
    Panchal, Satish K.
    RESULTS IN APPLIED MATHEMATICS, 2021, 10
  • [50] Ulam-Hyers Stability of Caputo-Type Fractional Stochastic Differential Equations with Time Delays
    Wang, Xue
    Luo, Danfeng
    Luo, Zhiguo
    Zada, Akbar
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021