Ulam-Hyers and Generalized Ulam-Hyers Stability of Fractional Differential Equations with Deviating Arguments

被引:0
|
作者
Dilna, Natalia [1 ]
Fekete, Gusztav [2 ]
Langerova, Martina [1 ,3 ]
Toth, Balazs [4 ]
机构
[1] Slovak Acad Sci, Math Inst, Bratislava 81473, Slovakia
[2] Szecheny Istvan Univ, AUDI Hungaria Fac Vehicle Engn, Dept Mat Sci & Technol, H-9026 Gyor, Hungary
[3] Slovak Univ Technol Bratislava, Inst Informat Engn Automat & Math, Bratislava 81237, Slovakia
[4] Univ Miskolc, Inst Appl Mech, H-3515 Miskolc, Hungary
关键词
Caputo derivative; Krasnoselskii's fixed point theorem; solvability; UH stability; GUH stability; EXISTENCE;
D O I
10.3390/math12213418
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the initial value problem for the fractional differential equation with multiple deviating arguments. By using Krasnoselskii's fixed point theorem, the conditions of solvability of the problem are obtained. Furthermore, we establish Ulam-Hyers and generalized Ulam-Hyers stability of the fractional functional differential problem. Finally, two examples are presented to illustrate our results, one is with a pantograph-type equation and the other is numerical.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Ulam-Hyers and generalized Ulam-Hyers stability of fractional functional integro-differential equations
    Dilna, Natalia
    Langerova, Martina
    IFAC PAPERSONLINE, 2024, 58 (12): : 280 - 285
  • [2] GENERALIZED ULAM-HYERS STABILITY FOR FRACTIONAL DIFFERENTIAL EQUATIONS
    Ibrahim, Rabha W.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (05)
  • [3] Stability of Ulam-Hyers and Ulam-Hyers-Rassias for a class of fractional differential equations
    Dai, Qun
    Gao, Ruimei
    Li, Zhe
    Wang, Changjia
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [4] Ulam-Hyers stability of fractional Langevin equations
    Wang, JinRong
    Li, Xuezhu
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 258 : 72 - 83
  • [5] Ulam-Hyers stability of pantograph fractional stochastic differential equations
    Mchiri, Lassaad
    Ben Makhlouf, Abdellatif
    Rguigui, Hafedh
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (04) : 4134 - 4144
  • [6] Ulam-Hyers Stability for Fractional Differential Equations in Quaternionic Analysis
    Yang, Zhan-Peng
    Xu, Tian-Zhou
    Qi, Min
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (01) : 469 - 478
  • [7] ULAM-HYERS STABILITY FOR OPERATORIAL EQUATIONS
    Bota-Boriceanu, M. F.
    Petrusel, A.
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2011, 57 : 65 - 74
  • [8] Ulam-Hyers stabilities of fractional functional differential equations
    Sousa, J. Vanterler da C.
    de Oliveira, E. Capelas
    Rodrigues, F. G.
    AIMS MATHEMATICS, 2020, 5 (02): : 1346 - 1358
  • [9] Ulam-Hyers stability of Caputo fractional difference equations
    Chen, Churong
    Bohner, Martin
    Jia, Baoguo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 7461 - 7470
  • [10] Global Existence and Ulam-Hyers Stability of Ψ-Hilfer Fractional Differential Equations
    Kucche, Kishor Deoman
    Kharade, Jyoti Pramod
    KYUNGPOOK MATHEMATICAL JOURNAL, 2020, 60 (03): : 647 - 671