Two Projections Suffice for Cerebral Vascular Reconstruction
被引:0
|
作者:
Cafaro, Alexandre
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Med Sch, Brigham & Womens Hosp, Boston, MA 02115 USA
TheraPanacea, Paris, France
Paris Saclay Univ, Gustave Roussy, U1030, Villejuif, FranceHarvard Med Sch, Brigham & Womens Hosp, Boston, MA 02115 USA
Cafaro, Alexandre
[1
,3
,4
]
Dorent, Reuben
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Med Sch, Brigham & Womens Hosp, Boston, MA 02115 USAHarvard Med Sch, Brigham & Womens Hosp, Boston, MA 02115 USA
Dorent, Reuben
[1
]
Haouchine, Nazim
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Med Sch, Brigham & Womens Hosp, Boston, MA 02115 USAHarvard Med Sch, Brigham & Womens Hosp, Boston, MA 02115 USA
Haouchine, Nazim
[1
]
Lepetit, Vincent
论文数: 0引用数: 0
h-index: 0
机构:
Univ Gustave Eiffel, CNRS, LIGM, Ecole Ponts, Champs Sur Marne, FranceHarvard Med Sch, Brigham & Womens Hosp, Boston, MA 02115 USA
Lepetit, Vincent
[5
]
Paragios, Nikos
论文数: 0引用数: 0
h-index: 0
机构:
TheraPanacea, Paris, FranceHarvard Med Sch, Brigham & Womens Hosp, Boston, MA 02115 USA
Paragios, Nikos
[3
]
Wells, William M., III
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Med Sch, Brigham & Womens Hosp, Boston, MA 02115 USA
MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USAHarvard Med Sch, Brigham & Womens Hosp, Boston, MA 02115 USA
Wells, William M., III
[1
,2
]
Frisken, Sarah
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Med Sch, Brigham & Womens Hosp, Boston, MA 02115 USAHarvard Med Sch, Brigham & Womens Hosp, Boston, MA 02115 USA
Frisken, Sarah
[1
]
机构:
[1] Harvard Med Sch, Brigham & Womens Hosp, Boston, MA 02115 USA
[2] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] TheraPanacea, Paris, France
[4] Paris Saclay Univ, Gustave Roussy, U1030, Villejuif, France
[5] Univ Gustave Eiffel, CNRS, LIGM, Ecole Ponts, Champs Sur Marne, France
来源:
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT VII
|
2024年
/
15007卷
基金:
美国国家卫生研究院;
关键词:
D O I:
10.1007/978-3-031-72104-5_69
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
3D reconstruction of cerebral vasculature from 2D biplanar projections could significantly improve diagnosis and treatment planning. We introduce a novel approach to tackle this challenging task by initially backprojecting the two projections, a process that traditionally results in unsatisfactory outcomes due to inherent ambiguities. To overcome this, we employ a U-Net approach trained to resolve these ambiguities, leading to significant improvement in reconstruction quality. The process is further refined using a Maximum A Posteriori strategy with a prior that favors continuity, leading to enhanced 3D reconstructions. We evaluated our approach using a comprehensive dataset comprising segmentations from approximately 700 MR angiography scans, from which we generated paired realistic biplanar DRRs. Upon testing with held-out data, our method achieved an 80% Dice similarity w.r.t the ground truth, superior to existing methods. Our code and dataset are available at https://github.com/Wapity/3DBrainXVascular.