Machine-learning approach facilitates prediction of whitefly spatiotemporal dynamics in a plant canopy

被引:0
|
作者
Kiobia, Denis O. [1 ]
Mwitta, Canicius J. [1 ]
Ngimbwa, Peter C. [1 ]
Schmidt, Jason M. [2 ]
Lu, Guoyu [1 ]
Rains, Glen C. [1 ]
机构
[1] Univ Georgia, Coll Engn, 2010,Love Ave,Apt C-20, Tifton, GA 31794 USA
[2] Univ Georgia, Dept Entomol, Tifton, GA USA
关键词
agriculture; deep learning; monitoring; pest management precision; vegetables; ADULT BEMISIA-TABACI; HEMIPTERA ALEYRODIDAE; POPULATION-DYNAMICS; SAMPLING PLANS; COTTON; VALIDATION; COMPLEX; SYSTEMS;
D O I
10.1093/jee/toaf035
中图分类号
Q96 [昆虫学];
学科分类号
摘要
Plant-specific insect scouting and prediction are still challenging in most crop systems. In this article, a machine-learning algorithm is proposed to predict populations during whiteflies (Bemisia tabaci, Hemiptera; Gennadius Aleyrodidae) scouting and aid in determining the population distribution of adult whiteflies in cotton plant canopies. The study investigated the main location of adult whiteflies relative to plant nodes (stem points where leaves or branches emerge), population variation within and between canopies, whitefly density variability across fields, the impact of dense nodes on overall canopy populations, and the feasibility of using machine learning for prediction. Daily scouting was conducted on 64 non-pesticide cotton plants, focusing on all leaves of a node with the highest whitefly counts. A linear mixed-effect model assessed distribution over time, and machine-learning model selection identified a suitable forecasting model for the entire canopy whitefly population. Findings showed that the top 3 to 5 nodes are key habitats, with a single node potentially accounting for 44.4% of the full canopy whitefly population. The Bagging Ensemble Artificial Neural Network Regression model accurately predicted canopy populations (R-2 = 85.57), with consistency between actual and predicted counts (P-value > 0.05). Strategic sampling of the top nodes could estimate overall plant populations when taking a few samples or transects across a field. The suggested machine-learning model could be integrated into computing devices and automated sensors to predict real-time whitefly population density within the entire plant canopy during scouting operations.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Machine-learning approach for disease prediction improves Genome wide association studies
    Eick, Lisa
    Cordioli, Mattia
    Yang, Zhiyu
    Jukarainen, Sakari
    Ganna, Andrea
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 : 294 - 294
  • [32] A Machine-Learning Approach for Prediction of Water Contamination Using Latitude, Longitude, and Elevation
    Banerjee, Kakoli
    Bali, Vikram
    Nawaz, Nishad
    Bali, Shivani
    Mathur, Sonali
    Mishra, Ram Krishn
    Rani, Sita
    WATER, 2022, 14 (05)
  • [33] Exploring the Efficacy of Artificial Intelligence in Speed Prediction: Explainable Machine-Learning Approach
    Jain, Vineet
    Chouhan, Rajesh
    Dhamaniya, Ashish
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2025, 39 (02)
  • [34] Anxiety onset in adolescents: a machine-learning prediction
    Alice V. Chavanne
    Marie Laure Paillère Martinot
    Jani Penttilä
    Yvonne Grimmer
    Patricia Conrod
    Argyris Stringaris
    Betteke van Noort
    Corinna Isensee
    Andreas Becker
    Tobias Banaschewski
    Arun L. W. Bokde
    Sylvane Desrivières
    Herta Flor
    Antoine Grigis
    Hugh Garavan
    Penny Gowland
    Andreas Heinz
    Rüdiger Brühl
    Frauke Nees
    Dimitri Papadopoulos Orfanos
    Tomáš Paus
    Luise Poustka
    Sarah Hohmann
    Sabina Millenet
    Juliane H. Fröhner
    Michael N. Smolka
    Henrik Walter
    Robert Whelan
    Gunter Schumann
    Jean-Luc Martinot
    Eric Artiges
    Molecular Psychiatry, 2023, 28 : 639 - 646
  • [35] A machine-learning algorithm for wind gust prediction
    Sallis, P. J.
    Claster, W.
    Hernandez, S.
    COMPUTERS & GEOSCIENCES, 2011, 37 (09) : 1337 - 1344
  • [36] Anxiety onset in adolescents: a machine-learning prediction
    Chavanne, Alice
    Paillere Martinot, Marie Laure
    Penttilae, Jani
    Grimmer, Yvonne
    Conrod, Patricia
    Stringaris, Argyris
    van Noort, Betteke
    Isensee, Corinna
    Becker, Andreas
    Banaschewski, Tobias
    Bokde, Arun L. W.
    Desrivieres, Sylvane
    Flor, Herta
    Grigis, Antoine
    Garavan, Hugh
    Gowland, Penny
    Heinz, Andreas
    Bruehl, Ruediger
    Nees, Frauke
    Orfanos, Dimitri Papadopoulos
    Paus, Tomas
    Poustka, Luise
    Hohmann, Sarah S.
    Millenet, Sabina
    Froehner, Juliane
    Smolka, Michael
    Walter, Henrik
    Whelan, Robert
    Schumann, Gunter
    Martinot, Jean-Luc
    Artiges, Eric
    MOLECULAR PSYCHIATRY, 2023, 28 (02) : 639 - 646
  • [37] Less is more: a new machine-learning methodology for spatiotemporal systems
    Sihan Feng
    Kang Wang
    Fuming Wang
    Yong Zhang
    Hong Zhao
    Communications in Theoretical Physics, 2022, 74 (05) : 118 - 124
  • [38] Less is more: a new machine-learning methodology for spatiotemporal systems
    Feng, Sihan
    Wang, Kang
    Wang, Fuming
    Zhang, Yong
    Zhao, Hong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2022, 74 (05)
  • [39] Machine-learning based error prediction approach for coarse-grid Computational Fluid Dynamics (CG-CFD)
    Hanna, Botros N.
    Dinh, Nam T.
    Youngblood, Robert W.
    Bolotnov, Igor A.
    PROGRESS IN NUCLEAR ENERGY, 2020, 118
  • [40] How can machine-learning methods assist in virtual screening for hyperuricemia? A healthcare machine-learning approach
    Ichikawa, Daisuke
    Saito, Toki
    Ujita, Waka
    Oyama, Hiroshi
    JOURNAL OF BIOMEDICAL INFORMATICS, 2016, 64 : 20 - 24